特征向量是一个非简并的向量,在这种变换下其方向保持不变。该向量在此变换下缩放的比例称为其特征值(本征值)。
特征值是线性代数中的一个重要概念。
线性变换通常可以用其特征值和特征向量来完全描述。特征空间是一组特征值相同的特征向量。“特征”一词来自德语的eigen。
希尔伯特在1904年第一次用这个词,更早亥尔姆霍尔兹也在相关意义下使用过该词。eigen一词可翻译为”自身的”、“特定于……的”、“有特征的”、或者“个体的”,这显示了特征值对于定义特定的线性变换的重要性。
扩展资料:
求矩阵的全部特征值和特征向量的方法如下:
第一步:计算的特征多项式;
第二步:求出特征方程的全部根,即为的全部特征值;
第三步:对于的每一个特征值,求出齐次线性方程组的一个基础解系,则的属于特征值的全部特征向量是(其中是不全为零的任意实数)。
参考资料来源:百度百科-特征值
参考资料来源:百度百科-特征向量
将A分别作用在u和v上,也就是计算Au和Av:
画个图就是:
Av=2v,A对v的作用,仅仅是将v延长了,这个系数2就叫特征值;而被矩阵A延长的向量(2,1),就是特征向量。下面给出数学定义。A为nxn矩阵,x为非零向量。若存在数λ,使Ax=λx成立,则称λ为A的特征值,x称为对应于λ的特征向量。
特征值有两个很特别的规律,分别是:
1、特征值的和,等于矩阵对角线的和(迹)。
2、特征值的积,等于矩阵的行列式。
扩展资料:
定理
谱定理在有限维的情况,将所有可对角化的矩阵作了分类:它显示一个矩阵是可对角化的,当且仅当它是一个正规矩阵。注意这包括自共轭(厄尔米特)的情况。这很有用,因为对角化矩阵T的函数f(T)(譬如波莱尔函数f)的概念是清楚的。
在采用更一般的矩阵的函数的时候谱定理的作用就更明显了。例如,若f是解析的,则它的形式幂级数,若用T取代x,可以看作在矩阵的巴拿赫空间中绝对收敛。谱定理也允许方便地定义正算子的唯一的平方根。
谱定理可以推广到希尔伯特空间上的有界正规算子,或者无界自共轭算子的情况。
求特征值,描述正方形矩阵的特征值的重要工具是特征多项式,λ是A的特征值等价于线性方程组(A – λI) v = 0 (其中I是单位矩阵)有非零解v (一个特征向量),因此等价于行列式|A – λI|=0 。
函数p(λ) = det(A – λI)是λ的多项式,因为行列式定义为一些乘积的和,这就是A的特征多项式。矩阵的特征值也就是其特征多项式的零点。
一个矩阵A的特征值可以通过求解方程pA(λ) = 0来得到。 若A是一个n×n矩阵,则pA为n次多项式,因而A最多有n个特征值。
反过来,代数基本定理说这个方程刚好有n个根,如果重根也计算在内的话。所有奇数次的多项式必有一个实数根,因此对于奇数n,每个实矩阵至少有一个实特征值。在实矩阵的情形,对于偶数或奇数的n,非实数特征值成共轭对出现。
求特征向量,一旦找到特征值λ,相应的特征向量可以通过求解特征方程(A – λI) v = 0 得到,其中v为待求特征向量,I为单位阵。没有实特征值的一个矩阵的例子是顺时针旋转90度。
参考资料:百度百科-特征向量
定义:Aξ=λξ ,λ是特征值ξ是特征向量
意思就是 一个矩阵作用在一个向量上,相当于一个数作用这个向量上,这个数就是特征值,这个向量就是特征向量
如果你指得讲清楚是讲清楚特征值和特征向量的几何意义,可以追问,我也可以给你讲清楚,只不过过程相当复杂,你要不需要我就先不讲了,但是我估计即使说明白,对你的学习没什么有用的帮助,说实话大学就算你要考研,特征值特征向量也就是背公式就解决了。
几何意义比较难解释,接下来的解释着重说明概念,略微牺牲准确性。首先要明白的是矩阵的几何意义,拿3x3的方阵举例,如果这个3x3的方阵三个向量线性无关(行向量列向量都行),则可以张成一个3维空间,以此类推,如果一个nxn的矩阵中n个向量线性无关,则可以张成一个n维空间。这里的n个向量就称为这个空间的基。比如常用的直角坐标系,可以认为是(1,0),(0,1)两个向量张成的,这样垂直且长度为1的向量构成的基叫做标准正交基,是基的特殊形式。
再接着理解矩阵乘法的意义,按照上面对矩阵的描述,矩阵乘法可以理解为,将一个空间过渡到(投影)另一个空间,而过度过程的几何变化,是旋转和拉伸。比如1*5,可以认为是在一维空间里,将1拉伸到5。同时将x轴旋转0度。 那么这里有三个重要的特征:旋转轴、旋转角度、沿旋转轴方向的拉伸程度。只要有这三个量,就能描述一切矩阵运算的几何变化过程。 要注意的是,旋转轴和基不是一个东西。
我们举个现实的例子,把你所处的环境想象成一个三维空间。找一张A4纸,在上面随意画一个带箭头的线段,把这个线段当作一个向量。接下来把这张纸立起来,这样这个向量就是三维空间中的向量了。然后,以A4纸的任意一条边作为旋转轴,转一下这张纸,这样你就实现了旋转操作。由于A4纸没法拉伸,你就只能想象一下了,把你这张A4纸想成有弹力的,你沿着你选的旋转轴拉长了这张纸,你画的这个向量也相应的变长了。我问你,这个时候的向量,和一开始那个向量在空间坐标上变化是怎样的?
我觉得你回答不出来,因为空间旋转对坐标的影响过于复杂,何况还有个拉伸。但是此时想象一种特殊情况,那就是旋转轴和向量重合。也就是你画的这个向量,刚好就在A4纸的边上,和边重合了。你再沿着这条边旋转A4纸,转多少度向量的位置都不会发生变化。只有当你要进行拉伸的时候,这个向量才发生变化。
发现和最上面的公式的描述有什么关系了么:“一个矩阵作用在一个向量上,相当于一个数作用这个向量上”。一个矩阵包含着旋转和拉伸两种变化,而作用在一个变量上,只体现出拉伸,没有旋转。这说明这个向量,和矩阵所代表的旋转操作中的旋转轴是重合的。而矩阵乘法的旋转轴,就是特征向量,而特征值,就是指在这个轴方向上的拉伸程度。
本回答被网友采纳矩阵(以方阵为例)可以看作是一个坐标系;
矩阵乘法可以看作是一个变换,可以把一个向量变成另一个向量;
在这个变换过程中,原向量可能在坐标系发生旋转、伸缩;
如果在这个变换过程中,矩阵对某个向量只发生伸缩,而不发生旋转;则这个向量为这个矩阵的特征向量,而伸缩的比例就是特征值。
矩阵是一个系统的理论,要理解特征向量、特征值,最好先了解矩阵的几何意义。
什么是特征值和特征向量?有什么区别?
特征向量(本征向量)是一个非简并的向量,其方向在该变换下不变。该向量在此变换下缩放的比例称为其特征值(本征值)。基础解系:齐次线性方程组的解集的极大线性无关组称为该齐次线性方程组的基础解系。基础解系是线性无关的,简单的理解就是能够用它的线性组合表示出该方程组的任意一组解,是针...
什么是特征值和特征向量?
在矩阵中,特征值指的是一个方阵对应的线性变换沿着某个向量方向发生的比例因子,而特征向量指的是在该方向上的一个非零向量。简单地说,特征向量是矩阵的某些变换下不发生改变的向量,而特征值则表示这些特征向量的缩放比例。
什么是特征值和特征向量?
特征值是线性代数中一个重要的概念,它用来描述矩阵的性质和变换的特点。通俗来说,特征值是一个矩阵在某个方向上的“重要程度”。详细解释:可以将一个矩阵想象成一个变换器,它可以对向量进行变换。而特征值就是这个变换器的“放大倍数”。举个例子,假设有一个矩阵A,它表示一个线性变换。当对一个...
什么是特征向量?特征值?
特征向量是一个非简并的向量,在这种变换下其方向保持不变。该向量在此变换下缩放的比例称为其特征值(本征值)。特征值是线性代数中的一个重要概念。线性变换通常可以用其特征值和特征向量来完全描述。特征空间是一组特征值相同的特征向量。“特征”一词来自德语的eigen。希尔伯特在1904年第一次用这个...
什么是特征值和特征值向量?
特征值是矩阵A满足方程Av=λv的数λ,其中v是非零向量,称为对应于特征值λ的特征向量。特征向量表示在矩阵作用下只发生伸缩变化而不改变方向的向量。2.求解特征值的步骤:首先,设矩阵A是一个n阶方阵。为了求解特征值,需要解特征方程det(A-λI)=0,其中I是单位矩阵,det表示行列式。解特征方程...
什么是特征值与特征向量?
特征值(Eigenvalue)是指数学意义上的矩阵的一个重要的属性,即一个线性变换(如一个矩阵乘法)的作用下,某一个向量不改变方向的量,称为这个向量的特征值。特征向量:特征向量(eigenvector)是另一个矩阵的重要的属性,即经过一个矩阵乘法之后,某一个特定方向上的向量不变的量,称之为这个向量的...
特征值和特征向量是什么意思?
特征值是指设 A 是n阶方阵,如果存在数m和非零n维列向量 x,使得 Ax=mx 成立,则称 m 是A的一个特征值或本征值。线性变换的特征向量(本征向量)是一个非简并的向量,其方向在该变换下不变。一个线性变换通常可以由其特征值和特征向量完全描述。特征空间是相同特征值的特征向量的集合。“特征...
什么是特征值和特征向量?
实特征值就是特征方程求出来的特征值是实数,而不是虚数,特征值是线性代数中的一个重要概念。在数学、物理学、化学、计算机等领域有着广泛的应用。设A是n阶方阵,如果存在数m和非零n维列向量x,使得Ax=mx成立,则称m是A的一个特征值或本征值。如将特征值的取值扩展到复数领域,则一个广义特征值...
向量的特征值与特征向量是什么意思啊?
乘积等于对应方阵行列式的值,和等于对应方阵对角线元素之和。特征值是指设 A 是n阶方阵,如果存在数m和非零n维列向量 x,使得 Ax=mx 成立,则称 m 是A的一个特征值或本征值。非零n维列向量x称为矩阵A的属于(对应于)特征值m的特征向量或本征向量,简称A的特征向量或A的本征向量。
特征值和特征向量的几何意义
特征向量:对于某个特征值λ,如果存在一个非零向量v满足Av = λv,那么向量v就被称为矩阵A对应于特征值λ的特征向量。特征向量描述了矩阵A变换后保持方向不变的向量。几何意义:特征向量描述了矩阵变换后保持方向不变的向量,而特征值则描述了变换对这个方向上的伸缩效应。因此,特征值和特征向量可以...