第一方面是数学基础,第二方面是统计学基础,第三方面是计算机基础。要想在数据分析的道路上走得更远,一定要注重数学和统计学的学习。数据分析说到底就是寻找数据背后的规律,而寻找规律就需要具备算法的设计能力,所以数学和统计学对于数据分析是非常重要的。
而想要快速成为数据分析师,则可以从计算机知识开始学起,具体点就是从数据分析工具开始学起,然后在学习工具使用过程中,辅助算法以及行业致死的学习。学习数据分析工具往往从Excel工具开始学起,Excel是目前职场人比较常用的数据分析工具,通常在面对10万条以内的结构化数据时,Excel还是能够胜任的。对于大部分职场人来说,掌握Excel的数据分析功能能够应付大部分常见的数据分析场景。
在掌握Excel之后,接下来就应该进一步学习数据库的相关知识了,可以从关系型数据库开始学起,重点在于Sql语言。掌握数据库之后,数据分析能力会有一个较大幅度的提升,能够分析的数据量也会有明显的提升。如果采用数据库和BI工具进行结合,那么数据分析的结果会更加丰富,同时也会有一个比较直观的呈现界面。
数据分析的最后一步就需要学习编程语言了,目前学习Python语言是个不错的选择,Python语言在大数据分析领域有比较广泛的使用,而且Python语言自身比较简单易学,即使没有编程基础的人也能够学得会。通过Python来采用机器学习的方式实现数据分析是当前比较流行的数据分析方式。
第一方面是数学基础,第二方面是统计学基础,第三方面是计算机基础。要想在数据分析的道路上走得更远,一定要注重数学和统计学的学习。数据分析说到底就是寻找数据背后的规律,而寻找规律就需要具备算法的设计能力,所以数学和统计学对于数据分析是非常重要的。
而想要快速成为数据分析师,则可以从计算机知识开始学起,具体点就是从数据分析工具开始学起,然后在学习工具使用过程中,辅助算法以及行业致死的学习。学习数据分析工具往往从Excel工具开始学起,Excel是目前职场人比较常用的数据分析工具,通常在面对10万条以内的结构化数据时,Excel还是能够胜任的。对于大部分职场人来说,掌握Excel的数据分析功能能够应付大部分常见的数据分析场景。
在掌握Excel之后,接下来就应该进一步学习数据库的相关知识了,可以从关系型数据库开始学起,重点在于Sql语言。掌握数据库之后,数据分析能力会有一个较大幅度的提升,能够分析的数据量也会有明显的提升。如果采用数据库和BI工具进行结合,那么数据分析的结果会更加丰富,同时也会有一个比较直观的呈现界面。
数据分析的最后一步就需要学习编程语言了,目前学习Python语言是个不错的选择,Python语言在大数据分析领域有比较广泛的使用,而且Python语言自身比较简单易学,即使没有编程基础的人也能够学得会。通过Python来采用机器学习的方式实现数据分析是当前比较流行的数据分析方式。
第1本《谁说菜鸟不会数据分析入门篇》
很有趣的数据分析书!基本看过就能明白,以小说的形式讲解,很有代入感。包含了数据分析的结构化思维、数据处理技巧、数据展现的技术,很能帮我们提升职场竞争能力。找不到工作的,学好了它,自然没问题。
第2本《拯救你的Excel数据的分析、处理、展示(动画版)》
一本用手机看的Excel操作书,大部分例子都配置了二维码,手机扫扫就能看,基本上可以躺着把书学了。所有数据的分析、处理也都带了职场范例(有会计、HR、销售场景),很贴合实际。拯救我们小白的Excel,职场加薪不是梦想!
第3本《Excel图表之道:如何制作专业有效的商务图表》
职场大牛的书,教我们做图表的,好看到不能再好看。可以设计和制作达到杂志级质量的、专业有效的商务图表。相信平时我们很难做到吧,看了你就知道,也许一切没那么难。
第4本《绝了!Excel可以这样用:数据分析经典案例实战图表书》
挺好的一个系列,都是Excle常用的技巧,适合销售和HR。也是职场故事,很接地气,带视频的,全都是Excel数据分析的常用理念和方法。
第5本《深入浅出数据分析》
深入浅出系列是对新手非常友好的丛书,用生动但啰嗦的语言讲解案例。厚厚的一本书翻起来很快。本书涉及的基础概念比较广,包含一点统计学知识,学下来对数据分析思维会有一个大概了解。
第6本《MySQL必知必会》
如果真想买书看,可以看这本,适合新手向的学习,看基础概念和查询相关的章节即可。网络上大部分MySQL都是偏DBA的。
第7本《深入浅出统计学》
大概是最啰嗦的深入浅出系列,从卖橡皮鸭到赌博机的案例,囊括了常用的统计分析如假设检验、概率分布、描述统计、贝叶斯等。
第8本《网站分析实战》
互联网不再是网站的天下,但是移动端依旧有Web,我们在朋友圈看到的所有H5活动、第三方内容等,都是依托网页实现。网站的数据分析依旧有存在空间,网站的数据指标还是能够指导我们运营!
第9本《深入浅出Python》
还是深入浅出系列,完全适合零基础的新人。需要注意的是,编程学习不同于其他知识,如果计算机基础不稳固,在使用中会遇到各类问题。知其然不知其所以然!
第10本《Python学习手册》
对于拥有编程基础的人,这本书系无巨细的有些啰嗦,不过对新人,可以避免不必要的坑。把它当作一本工具文档吧,当遇到不理解的内容随时翻阅。
第11本《利用Python进行数据分析》
这本书是你学习python不二之选,对着书,着重学习numpy,pandas两个包!每段代码都敲打一遍,千万行的数据清洗基本不会有大问题了。
第12本《R语言实战》
R语言的入门书籍,从数据读取到各类统计函数的使用。虽然没有涉及机器学习,依靠这本书入门R是绰绰有余了。
第13本《统计学:从数据到结论》
这本书是将R语言和统计学结合的教材,可以利用这本书再复习一遍统计知识。
第14本《深入浅出SQL》
带你进入SQL语言的心脏地带,从使用INSERT和SELECT这些基本的查询语法到使用子查询(subquery)、连接(join)和事务(transaction)这样的核心技术来操作数据库。到读完《深入浅出SQL》之时,你将不仅能够理解高效数据库设计和创建,还能像一个专家那样查询、归一(normalizing)和联接数据。你将成为数据的真正主人。
第15本《数据挖掘导论》
这本书绝对是一本良心教材,拿到手从第一章开始阅读,能看多少就看多少。但是要尽量多看点,因为此书你可能要看一辈子的~~
第16本《算法导论中文版》
本书将严谨性和全面性融为一体,深入讨论各类算法,并着力使这些算法的设计和分析能为各个层次的读者接受。算法以英语和伪代码的形式描述,具备初步程序设计经验的人就能看懂;说明和解释力求浅显易懂,不失深度和数学严谨性。
上面的书籍都是PDF版
视频教材的有:
Python入门教程完整版(懂中文就能学会)资料
Python入门教程完整版(懂中文就能学会)视频
Mysql从入门到精通全套视频教程
8天深入理解python教程
大数据Hadoop视频教程,从入门到精通
Python就业班
Python标准库(中文版)
数学建模0基础从入门到精通,全套资源
0基础Python实战-四周实现爬虫系统
麦子学院招牌课程[明星python编程视频VIP教程][200G](价值9000元)
从零基础到数据分析师,帮你拿到年薪50万!
炜心:xccx158
如何零基础学习数据分析
1. 建立数据分析的基础知识:了解数据分析的概念、作用和流程,熟悉常用的数据分析工具和技术。2. 学习统计学基础:掌握统计学的基本概念、概率论和假设检验等知识,理解统计分析在数据分析中的应用。3. 学习数据收集和整理:学习如何有效地收集、整理和清洗数据,掌握数据清洗的基本方法和技巧。4. 学习数...
零基础如何系统学习数据分析?
2. 学习统计学和数学 统计学的内容全都是关于假设和数列,然而没有统计学和数学的知识你很难深入到数据行业里,这是数据科学家的重中之重。3.一次性完成一门网络开放课程(最难执行)大规模网络开放课程可以免费获取和学习,可这对你来说也是最难实现的诺言。很多学生通常一次性注册选修很多课程,结果一...
零基础学习数据分析要做哪些准备?
1.统计学相关知识统计学是数据分析的基础,因为数据分析需要对大量数据进行统计分析,大家可以通过对统计学的学习,培养数据分析最基本的一些逻辑思维。2. EXCEL 不要小看EXCEL,它可是最初级的数据分析工具,在处理的数据量不是很大时,EXCEL完全可以胜任。而且大家都有一定基础,平时工作中也经常用,学习...
如何在家里进行简单的数据分析学习?
1. 学习基本概念:开始之前,确保您了解数据分析的基本概念和术语。可以通过在线课程、教材、博客文章等资源学习数据分析的基础知识。2. 安装分析工具:选择一款适合初学者的数据分析工具,例如Microsoft Excel、Google Sheets或Python中的Pandas库。根据您的需求和兴趣选择一个工具,并安装在您的计算机上。3....
不懂统计学,作为零基础的人,怎么自学数据分析
对于想要进一步学习数据分析的人来说,可以着手做一些自己感兴趣的数据分析项目。这可能需要学习一些爬虫和数据库的知识。例如,可以爬取歌词,分析人们喜欢唱的歌曲;可以分析公司的订单数据,寻找规律;也可以爬取女朋友的微博数据,了解她的兴趣爱好。这些项目都是从简单的、基础的、感兴趣的方面开始的。...
数据分析如何自学
1、学习数据分析基础知识,包括概率论、数理统计。基础这种东西还是要掌握好的啊,基础都还没扎实,知识大厦是很容易倒的哈。2、目标行业的相关理论知识。比如金融类的,要学习证券、银行、财务等各种知识,不然到了公司就一脸懵逼啦。3、学习数据分析工具,软件结合案列的实际应用,关于数据分析主流软件有...
如何学习大数据分析的知识?
1.数学基础:大数据分析涉及到很多数学知识,如线性代数、概率论、统计学等。因此,首先需要具备扎实的数学基础。2.编程技能:大数据分析通常使用编程语言进行数据处理和分析,如Python、R等。因此,需要学习并熟练掌握至少一种编程语言。3.数据库知识:大数据分析需要处理大量的数据,因此需要了解数据库的基...
如何快速成为一名数据分析师?
数据分析的最后一步就需要学习编程语言了,目前学习Python语言是个不错的选择,Python语言在大数据分析领域有比较广泛的使用,而且Python语言自身比较简单易学,即使没有编程基础的人也能够学得会。通过Python来采用机器学习的方式实现数据分析是当前比较流行的数据分析方式。
怎样自好数据分析?选对工具和书籍很重要!
想要提升数据分析能力,工具和书籍的选择至关重要。首先,你需要明确初始工具的选择。Power BI和Excel虽然常见,但它们的适用场景不同:Power BI更适合复杂的业务分析,而Excel则适用于小型数据处理。Python和SQL作为编程语言,能处理更广泛的场景,但需要基础编程知识。了解你的工作需求和职业目标,是决定工具...
学习数据分析要哪些基础?
用于数据获取和处理。数据挖掘工程师需熟悉Hadoop,且至少精通一门编程语言如Python、Java、C++,并能熟练使用Shell。综上所述,学习数据分析需要从办公软件、数据分析软件及方法、数学知识、分析工具和编程语言等方面进行系统学习。选择适合自己的方向,如文档写作等,也能在数据分析领域找到适合自己的位置。