收敛数列的有界性证明

数列{Xn}收敛,设当n趋于无穷时n=a,根据数列极限定义,对于堁E=1,存在正整数N,当n>N时,不等式/Xn-a/<1都成立,于是当n>N时,【/Xn/=/(Xn-a)+a/≤/Xn-a/+/a/<1+/a/】取M=max{/X1/,/X2/,X3/,,,,/XN/,1+/a/}那么数列{Xn}中的一切Xn都满足不等式/Xn/≤M。不明白【】中的换算,还有就是M的取值中XN的意思,还有就是数列趋于a但是只是趋于,为什么M的取值里面有1+/a/

目的是证明收敛数列的有界性。 数列{Xn}收敛到a(不是n=a,),根据极限定义对于任意E>0, 存在正整数N,当n>N,不等式/Xn-a/<E都成立,此处E可以选为1。直观地想就是当n趋于无穷的时候,Xn的值无限接近a,为了准确描述这一性质,引入了N。【】的是绝对值不等式,为的是证明,当n>N时,所有的Xn都有上限,都要小于E+|a|。就是Xn无限接近a,在n>N之后,所有Xn都小于a加上个正数(E)。到此证明了从N开始,数列都是有界的(都小于E+|a|)。下面要证明n<=N的时候数列也得有界(X1, X2.....,XN,显然对于任意m, Xm<=|Xm|,所以对于所有n<=N,取其绝对值,并和刚才的E+|a|并为一个集合。N之前所有的Xn,都小于等于自身绝对值,N之后所有Xn都小于E+|a|。取该集合最大值为M,对于全部Xn来说,必然都小于这个值。最后,对于数列Xn, 确实存在M,对所有n, Xn<M,收敛数列必有界。
温馨提示:内容为网友见解,仅供参考
第1个回答  2013-08-30
也就是说LIM情况Xn =获得的定义。
利用率限制的定义,第一次启动全部N后面(这里是无限的)Xn是有界的,我们可以得到情况Xn | <| A | +1
N在前面的数量有限,你可以找到最大值。追问

还是不怎么明白,能通俗的说吗

如何证明收敛数列必定为有界数列?
设数列{a[n]}收敛于a,由定义知存在正整数M,使得当n>M时|a[n]-a|<1,或者说a-1<a[n]<a+1于是min{a[1],a[2],...,a[M],a-1}<=a[n]<=max{a[1],a[2],...,a[M],a+1},即{a[n]}有界。如果数列{Xn}收敛,那么该数列必定有界。推论:无界数列必定发散;数列...

证明收敛数列的有界性
n>N时,都有 (n>N),从而有 。取,则对一切的n,都有,所以数列有界。根据定理2,如果数列无界,则数列一定是发散的。但必须注意:有界数列不一定收敛。例如,数列是有界的。因为,但它却是发散的(见例4)。可见,数列有界是数列收敛的必要条件,但不是充分条件....

收敛数列一定有界?
收敛数列一定有界。本质就是收敛数列一定有界,(反证,假设无界,肯定不收敛)有界数列不一定收敛,(反例,数列{(-1)^n}是有界的,但它却是发散的。)数列收敛指的是数列有极限。我们把极限存在的数列称为收敛数列,把极限不存在的数列称为发散数列。数列极限定义设{Xn}为一数列,如果存在一个实数...

怎样快速证明一个函数收敛和有界
证明收敛数列的有界性,只需要证明该数列的任何一项都落在一个固定的范围。数列X1,X2,X3一直到Xn都落在一个固定的范围。可以用数学语言表示为 |Xn|<M 已经知道该数列收敛,则有|Xn-a|<ε,则有-ε<Xn-a<ε,则有-ε+a<Xn<ε+a,又有若数列有界的数学语言为 |Xn|<M 则有-M<Xn<M,则...

如何证明数列收敛,且有界?
数列收敛则存在极限,这两个说法是等价的;2、数列收敛与有界性的关系:数列收敛则数列必然有界,但是反过来不一定成立!如果数列{Xn}收敛,那么该数列必定有界。推论:无界数列必定发散;数列有界,不一定收敛;数列发散不一定无界。数列有界是数列收敛的必要条件,但不是充分条件。

高等数学:有界不一定收敛,收敛一定有界,为什么呢
收敛数列一定有界(反证,假设无界,肯定不收敛)有界数列不一定收敛(反例,数列{(-1)^n}是有界的,但它却是发散的)本质的不同数列的收敛是指当n趋于无穷时数列项趋于一个数,而数列的前面的有限项是一个确定的数,显然有界,当n趋于无穷时数列收敛,,说明后面的任意项都是一个有限的数。而函数收不...

收敛数列的有界性M
目的是证明收敛数列的有界性。 数列{Xn}收敛到a(不是n=a,),根据极限定义对于任意E>0, 存在正整数N,当n>N,不等式\/Xn-a\/<E都成立,此处E可以选为1。直观地想就是当n趋于无穷的时候,Xn的值无限接近a,为了准确描述这一性质,引入了N。【】的是绝对值不等式,为的是证明,当n>N时,...

高数中收敛数列的有界性证明是怎么回家事,详细解释解释...
回答:因为数列收敛,设,由定义,对于,存在正整数, n>N时,都有 (n>N),从而有 。 取,则对一切的n,都有,所以数列有界。 根据定理2,如果数列无界,则数列一定是发散的。但必须注意:有界数列不一定收敛。例如,数列是有界的。因为,但它却是发散的(见例4)。可见,数列有界是数列收敛的必要条件,但不是...

收敛数列的有界性问题
证明:因为数列{Xn}有界 所以存在常数C》0,使得 |Xn|<C,因为数列{Yn}的极限是0 则对于任意给出的e,总存在N,使得n>N时,|Yn|<e\/C 于是当n>N的时候|XnYn|=|Xn||Yn|<C*e\/C=e 由于e的任意性 所以数列{XnYn}的极限是0

如何证明收敛数列必有界呢?
具体证明各种数列收敛的方法是高数至少半个学期的课程,不可能在这给一一列出来。可参考微积分II的教材,非常详细。有界性,定义:设有数列xn , 若存在M>0,使得一切自然数n,恒有|Xn|<M成立,则称数列xn有界。定理1:如果数列{Xn}收敛,那么该数列必定有界。推论:无界数列必定发散;数列有界,不...

相似回答