七年级数学上册计算题加方程加答案

尽量多一些,不要太难

题在前,答案在后 谢谢采纳

1.设a,b,c为实数,且|a|+a=0,|ab|=ab,|c|-c=0,求代数式|b|-|a+b|-|c-b|+|a-c|的值.

2.若m<0,n>0,|m|<|n|,且|x+m|+|x-n|=m+n, 求x的取值范围.

3.设(3x-1)7=a7x7+a6x6+…+a1x+a0,试求a0+a2+a4+a6的值.

5.解方程2|x+1|+|x-3|=6.

6.解不等式||x+3|-|x-1||>2.

7.比较下面两个数的大小:

8.x,y,z均是非负实数,且满足:

x+3y+2z=3,3x+3y+z=4,

求u=3x-2y+4z的最大值与最小值.

9.求x4-2x3+x2+2x-1除以x2+x+1的商式和余式.

10.如图1-88所示.小柱住在甲村,奶奶住在乙村,星期日小柱去看望奶奶,先在北山坡打一捆草,又在南山坡砍一捆柴给奶奶送去.请问:小柱应该选择怎样的路线才能使路程最短?

11.如图1-89所示.AOB是一条直线,OC,OE分别是∠AOD和∠DOB的平分线,∠COD=55°.求∠DOE的补角.

12.如图1-90所示.BE平分∠ABC,∠CBF=∠CFB=55°,∠EDF=70°.求证:BC‖AE.

13.如图1-91所示.在△ABC中,EF⊥AB,CD⊥AB,∠CDG=∠BEF.求证:∠AGD=∠ACB.

14.如图1-92所示.在△ABC中,∠B=∠C,BD⊥AC于D.求

15.如图1-93所示.在△ABC中,E为AC的中点,D在BC上,且BD∶DC=1∶2,AD与BE交于F.求△BDF与四边形FDCE的面积之比.

16.如图1-94所示.四边形ABCD两组对边延长相交于K及L,对角线AC‖KL,BD延长线交KL于F.求证:KF=FL.

17.任意改变某三位数数码顺序所得之数与原数之和能否为999?说明理由.

18.设有一张8行、8列的方格纸,随便把其中32个方格涂上黑色,剩下的32个方格涂上白色.下面对涂了色的方格纸施行“操作”,每次操作是把任意横行或者竖列上的各个方格同时改变颜色.问能否最终得到恰有一个黑色方格的方格纸?

19.如果正整数p和p+2都是大于3的素数,求证:6|(p+1).

20.设n是满足下列条件的最小正整数,它们是75的倍数,且恰有

21.房间里凳子和椅子若干个,每个凳子有3条腿,每把椅子有4条腿,当它们全被人坐上后,共有43条腿(包括每个人的两条腿),问房间里有几个人?

22.求不定方程49x-56y+14z=35的整数解.

23.男、女各8人跳集体舞.

(1)如果男女分站两列;

(2)如果男女分站两列,不考虑先后次序,只考虑男女如何结成舞伴.

问各有多少种不同情况?

24.由1,2,3,4,5这5个数字组成的没有重复数字的五位数中,有多少个大于34152?

25.甲火车长92米,乙火车长84米,若相向而行,相遇后经过1.5秒(s)两车错过,若同向而行相遇后经6秒两车错过,求甲乙两火车的速度.

26.甲乙两生产小队共同种菜,种了4天后,由甲队单独完成剩下的,又用2天完成.若甲单独完成比乙单独完成全部任务快3天.求甲乙单独完成各用多少天?

27.一船向相距240海里的某港出发,到达目的地前48海里处,速度每小时减少10海里,到达后所用的全部时间与原速度每小时减少4海里航行全程所用的时间相等,求原来的速度.

28.某工厂甲乙两个车间,去年计划完成税利750万元,结果甲车间超额15%完成计划,乙车间超额10%完成计划,两车间共同完成税利845万元,求去年这两个车间分别完成税利多少万元?

29.已知甲乙两种商品的原价之和为150元.因市场变化,甲商品降价10%,乙商品提价20%,调价后甲乙两种商品的单价之和比原单价之和降低了1%,求甲乙两种商品原单价各是多少?

30.小红去年暑假在商店买了2把儿童牙刷和3支牙膏,正好把带去的钱用完.已知每支牙膏比每把牙刷多1元,今年暑假她又带同样的钱去该商店买同样的牙刷和牙膏,因为今年的牙刷每把涨到1.68元,牙膏每支涨价30%,小红只好买2把牙刷和2支牙膏,结果找回4角钱.试问去年暑假每把牙刷多少钱?每支牙膏多少钱?

31.某商场如果将进货单价为8元的商品,按每件12元卖出,每天可售出400件,据经验,若每件少卖1元,则每天可多卖出200件,问每件应减价多少元才可获得最好的效益?

32.从A镇到B镇的距离是28千米,今有甲骑自行车用0.4千米/分钟的速度,从A镇出发驶向B镇,25分钟以后,乙骑自行车,用0.6千米/分钟的速度追甲,试问多少分钟后追上甲?

33.现有三种合金:第一种含铜60%,含锰40%;第二种含锰10%,含镍90%;第三种含铜20%,含锰50%,含镍30%.现各取适当重量的这三种合金,组成一块含镍45%的新合金,重量为1千克.

(1)试用新合金中第一种合金的重量表示第二种合金的重量;

(2)求新合金中含第二种合金的重量范围;

(3)求新合金中含锰的重量范围.

答案:因为|a|=-a,所以a≤0,又因为|ab|=ab,所以b≤0,因为|c|=c,所以c≥0.所以a+b≤0,c-b≥0,a-c≤0.所以

原式=-b+(a+b)-(c-b)-(a-c)=b.

3.因为m<0,n>0,所以|m|=-m,|n|=n.所以|m|<|n|可变为m+n>0.当x+m≥0时,|x+m|=x+m;当x-n≤0时,|x-n|=n-x.故当-m≤x≤n时,

|x+m|+|x-n|=x+m-x+n=m+n.

4.分别令x=1,x=-1,代入已知等式中,得

a0+a2+a4+a6=-8128.

5.②+③整理得

x=-6y, ④

④代入①得 (k-5)y=0.

当k=5时,y有无穷多解,所以原方程组有无穷多组解;当k≠5时, y=0,代入②得(1-k)x=1+k,因为x=-6y=0,所以1+k=0,所以k=-1.

故k=5或k=-1时原方程组有解.

<x≤3时,有2(x+1)-(x-3)=6,所以x=1;当x>3时,有

,所以应舍去.

7.由|x-y|=2得

x-y=2,或x-y=-2,

所以

由前一个方程组得

|2+y|+|y|=4.

当y<-2时,-(y+2)-y=4,所以 y=-3,x=-1;当-2≤y<0时,(y+1)-y=4,无解;当y≥0时,(2+y)+y=4,所以y=1,x=3.

同理,可由后一个方程组解得

所以解为

解①得x≤-3;解②得

-3<x<-2或0<x≤1;

解③得x>1.

所以原不等式解为x<-2或x>0.9.令a=99991111,则

于是

显然有a>1,所以A-B>0,即A>B.

10.由已知可解出y和z

因为y,z为非负实数,所以有

u=3x-2y+4z

11.

所以商式为x2-3x+3,余式为2x-4.

12.小柱的路线是由三条线段组成的折线(如图1-97所示).

我们用“对称”的办法将小柱的这条折线的路线转化成两点之间的一段“连线”(它是线段).设甲村关于北山坡(将山坡看成一条直线)的对称点是甲′;乙村关于南山坡的对称点是乙′,连接甲′乙′,设甲′乙′所连得的线段分别与北山坡和南山坡的交点是A,B,则从甲→A→B→乙的路线的选择是最好的选择(即路线最短).

显然,路线甲→A→B→乙的长度恰好等于线段甲′乙′的长度.而从甲村到乙村的其他任何路线,利用上面的对称方法,都可以化成一条连接甲′与乙′之间的折线.它们的长度都大于线段甲′乙′.所以,从甲→A→B→乙的路程最短.

13.如图1-98所示.因为OC,OE分别是∠AOD,∠DOB的角平分线,又

∠AOD+∠DOB=∠AOB=180°,

所以 ∠COE=90°.

因为 ∠COD=55°,

所以∠DOE=90°-55°=35°.

因此,∠DOE的补角为

180°-35°=145°.

14.如图1-99所示.因为BE平分∠ABC,所以

∠CBF=∠ABF,

又因为 ∠CBF=∠CFB,

所以 ∠ABF=∠CFB.

从而

AB‖CD(内错角相等,两直线平行).

由∠CBF=55°及BE平分∠ABC,所以

∠ABC=2×55°=110°. ①

由上证知AB‖CD,所以

∠EDF=∠A=70°, ②

由①,②知

BC‖AE(同侧内角互补,两直线平行).

15.如图1-100所示.EF⊥AB,CD⊥AB,所以

∠EFB=∠CDB=90°,

所以EF‖CD(同位角相等,两直线平行).所以

∠BEF=∠BCD(两直线平行,同位角相等).①又由已知 ∠CDG=∠BEF. ②

由①,② ∠BCD=∠CDG.

所以

BC‖DG(内错角相等,两直线平行).

所以

∠AGD=∠ACB(两直线平行,同位角相等).

16.在△BCD中,

∠DBC+∠C=90°(因为∠BDC=90°),①

又在△ABC中,∠B=∠C,所以

∠A+∠B+∠C=∠A+2∠C=180°,

所以

由①,②

17.如图1-101,设DC的中点为G,连接GE.在△ADC中,G,E分别是CD,CA的中点.所以,GE‖AD,即在△BEG中,DF‖GE.从而F是BE中点.连结FG.所以



S△EFD=S△BFG-SEFDG=4S△BFD-SEFDG,

所以 S△EFGD=3S△BFD.

设S△BFD=x,则SEFDG=3x.又在△BCE中,G是BC边上的三等分点,所以

S△CEG=S△BCEE,

从而

所以

SEFDC=3x+2x=5x,

所以

S△BFD∶SEFDC=1∶5.

18.如图1-102所示.

由已知AC‖KL,所以S△ACK=S△ACL,所以

即 KF=FL.

+b1=9,a+a1=9,于是a+b+c+a1+b1+c1=9+9+9,即2(a十b+c)=27,矛盾!

20.答案是否定的.设横行或竖列上包含k个黑色方格及8-k个白色方格,其中0≤k≤8.当改变方格的颜色时,得到8-k个黑色方格及k个白色方格.因此,操作一次后,黑色方格的数目“增加了”(8-k)-k=8-2k个,即增加了一个偶数.于是无论如何操作,方格纸上黑色方格数目的奇偶性不变.所以,从原有的32个黑色方格(偶数个),经过操作,最后总是偶数个黑色方格,不会得到恰有一个黑色方格的方格纸.

21.大于3的质数p只能具有6k+1,6k+5的形式.若p=6k+1(k≥1),则p+2=3(2k+1)不是质数,所以, p=6k+5(k≥0).于是,p+1=6k+6,所以,6|(p+1).

22.由题设条件知n=75k=3×52×k.欲使n尽可能地小,可设n=2α3β5γ(β≥1,γ≥2),且有

(α+1)(β+1)(γ+1)=75.

于是α+1,β+1,γ+1都是奇数,α,β,γ均为偶数.故取γ=2.这时

(α+1)(β+1)=25.

所以

故(α,β)=(0,24),或(α,β)=(4,4),即n=20·324·52

23.设凳子有x只,椅子有y只,由题意得

3x+4y+2(x+y)=43,

即 5x+6y=43.

所以x=5,y=3是唯一的非负整数解.从而房间里有8个人.

24.原方程可化为

7x-8y+2z=5.

令7x-8y=t,t+2z=5.易见x=7t,y=6t是7x-8y=t的一组整数解.所以它的全部整数解是

而t=1,z=2是t+2z=5的一组整数解.它的全部整数解是

把t的表达式代到x,y的表达式中,得到原方程的全部整数解是

25.(1)第一个位置有8种选择方法,第二个位置只有7种选择方法,…,由乘法原理,男、女各有

8×7×6×5×4×3×2×1=40320

种不同排列.又两列间有一相对位置关系,所以共有2×403202种不同情况.

(2)逐个考虑结对问题.

与男甲结对有8种可能情况,与男乙结对有7种不同情况,…,且两列可对换,所以共有

2×8×7×6×5×4×3×2×1=80640

种不同情况.

26.万位是5的有

4×3×2×1=24(个).

万位是4的有

4×3×2×1=24(个).

万位是3,千位只能是5或4,千位是5的有3×2×1=6个,千位是4的有如下4个:

34215,34251,34512,34521.

所以,总共有

24+24+6+4=58

个数大于34152.

27.两车错过所走过的距离为两车长之总和,即

92+84=176(米).

设甲火车速度为x米/秒,乙火车速度为y米/秒.两车相向而行时的速度为x+y;两车同向而行时的速度为x-y,依题意有

解之得

解之得x=9(天),x+3=12(天).

解之得x=16(海里/小时).

经检验,x=16海里/小时为所求之原速.

30.设甲乙两车间去年计划完成税利分别为x万元和y万元.依题意得

解之得

故甲车间超额完成税利

乙车间超额完成税利

所以甲共完成税利400+60=460(万元),乙共完成税利350+35=385(万元).

31.设甲乙两种商品的原单价分别为x元和y元,依题意可得

由②有

0.9x+1.2y=148.5, ③

由①得x=150-y,代入③有

0. 9(150-y)+1.2y=148. 5,

解之得y=45(元),因而,x=105(元).

32.设去年每把牙刷x元,依题意得

2×1.68+2(x+1)(1+30%)=[2x+3(x+1)]-0.4,



2×1.68+2×1.3+2×1.3x=5x+2.6,

即 2.4x=2×1.68,

所以 x=1.4(元).

若y为去年每支牙膏价格,则y=1.4+1=2.4(元).

33.原来可获利润4×400=1600元.设每件减价x元,则每件仍可获利(4-x)元,其中0<x<4.由于减价后,每天可卖出(400+200x)件,若设每天获利y元,则

y=(4-x)(400+200x)

=200(4-x)(2+x)

=200(8+2x-x2)

=-200(x2-2x+1)+200+1600

=-200(x-1)2+1800.

所以当x=1时,y最大=1800(元).即每件减价1元时,获利最大,为1800元,此时比原来多卖出200件,因此多获利200元.

34.设乙用x分钟追上甲,则甲到被追上的地点应走了(25+x)分钟,所以甲乙两人走的路程分别是0.4(25+x)千米和0.6x千米.因为两人走的路程相等,所以

0.4(25+x)=0.6x,

解之得x=50分钟.于是

左边=0.4(25+50)=30(千米),

右边= 0.6×50=30(千米),

即乙用50分钟走了30千米才能追上甲.但A,B两镇之间只有28千米.因此,到B镇为止,乙追不上甲.

35.(1)设新合金中,含第一种合金x克(g),第二种合金y克,第三种合金z克,则依题意有

(2)当x=0时,y=250,此时,y为最小;当z=0时,y=500为最大,即250≤y≤500,所以在新合金中第二种合金重量y的范围是:最小250克,最大500克.

(3)新合金中,含锰重量为:

x·40%+y·10%+z·50%=400-0.3x,

而0≤x≤500,所以新合金中锰的重量范围是:最小250克,最大400克
温馨提示:内容为网友见解,仅供参考
第1个回答  2013-09-02
一、填空题 (每小题2分,共20分) 1、一个几何体的主视图、左视图、俯视图都是正方形,那么这个几何体的形状可能是 。 2、在0,2,-7,11/4,-7/3,-3,0.25中,整数有 ,负数有 ,正分数有 。 3、比较下列数的大小:-6_____-5,0______-|-7|,1______-2005 4、(-3)4的底数是 ,指数是 。 5、-32= ;(-2)3= ;(--1/3)3= 。 6、找规律填空:-7,-3,1,5,9, ;其和是 。 7、圆锥和圆柱的侧面展开图分别是 和 。 8、位于数轴上原点的左边,且与原点距离为4个单位长度的数是 9、将一个细木条固定在墙上,只需两个钉子,他的依据是 。 10、时钟在2点正时,其时针和分针所成的角的大小为 。二、选择题 (每小题2分,共20分) 11、下列哪个几何体的截面一定不是圆。 ( ) A、圆锥 B、圆柱 C、球 D、棱柱 12、下列事情中,不可能发生的事情是( ) A、我们班级的同学将会出现一位科学家; B、明天会下雨; C、从装有5个红球,3个黄球的口袋中,摸出3个白球; D、今天是星期二,明天是星期三; 13、绝对值等于5的数是 ( ) A、5 ; B、-5 ; C、+5或5 ; D、0和5 14、下面判断正确的有( )个 ①有理数的绝对值一定比0大。②两数相加,和一定大于任何一个加数。③经过一点可以作两条直线。④长方体的截面一定是长方形。⑤过一点有且只有一条直线与这条直线平行。 A、0; B、1; C、2; D、3 15、月球表面的温度,中午是101度,半夜大约是-153度,中午比半夜高()度。 A、52; B、-52 ; C、254 ; D、-254 16、为了促销,商场将某种商品按标价的9折出售,仍可获利10%,如果商品的标价为33元,那么该商品的进价为()元 A、31;B、30.2;C、29.7;D、27 17、用科学计数法表示361000000= ( ) A、361×106 ; B、36.1×107 ; C、3.61×10 8 ; D、0.361×10 9 18、一个两位数,个位上是a,十位上是b,用代数式表示这个两位数 ( ) A、ab ; B、ba ; C、10a+b ; D、10b+a 19、0.25°=( )′=( )″ A、25′,2500″;B、15′,19″;C、(1/4)′,(1/240)″;D、15′,0.5″ 20、下列各式从左到右正确的是 ( ) A、-(3x+2)=-3x+2 ; B、-(-2x-7)=-2x+7 C、-(3x-2)=-3x+2 ; D、-(-2x-7)=2x-7 三、计算 (每小题4分,共12分) 21、(-3x)2×[-2/3+(-5/9)] 22、0-23÷(-4)3-1/8 23、[(-3)3-(-5)3]÷[(-3)- (-5)] 24、[3/4+(-1/2)-(-7/8)]÷(-7/8)四、先化简,再求值 (每小题5分,共10分) 25、(5a+2a2-3-4a3)-(-a+3a3-a2),其中a=-2 26、(2m2n+2mn2)-[2(m2n-1)+2mn2+2],其中m=-2,n=2 五、解方程 (每小题4分,共8分) 27、2-(1-x)=-2 ;28、(2x+1)/3-(5x-1)/6=1 ;30、(x+3)/3=(x-1)/2+1 六、应用题 31、某商场计划投入x元采购一批商品,并计划在一个月内全部销售出去。经过市场调查发现,如果月初售出可获利15%,并可用本金和利润再投资其它商品,到月末又可获利10%;如果全部商品到月末再销售,可一次性获利30%,但要付出仓储费用700元。(1)分别用代数式表示两种销售方式的利润。(2)根据商场的资金状况,选用哪种方式获利较多? 32、人在运动时心跳的速度通常和人的年龄有关,如果用a表示一个人的年龄,用b表示正常情况下这个人在运动时所能承受的每分心跳的最高次数,那么b=0.8(220-a),试问一个45岁的人运动时10秒心跳的次数为22次,他有危险吗? 33、甲、乙分别由A、B两地沿同一路线相向二行,在离B地12千米处相遇。相遇后,两人继续前进到达B、A两地,然后立即返回,在第一次相遇后6小时,两人又在离A地6千米处相遇。求A、B两地的距离及甲、乙二人的速度。七、作图题 (4分) 34、如图是由几个小立块所搭几何体的俯视图,小正方形的数字表示在该位置小立方块的个数,请画出这个几何体的主视图和左视图。 1321 35、下表给出了第26届、第27届、第28届国际奥林匹克运动会上七个国家获得金牌的情况: 第26届 第27届第28届美国443935俄罗斯263227德国201414中国162832法国151311意大利131310澳大利亚91617英国5119(1)制作统计图,表示美国和中国在三届奥运会上获得金牌的数目。(2)从制作的统计图中,你获得了哪些信息?(3)第28届奥运会,总计有300块金牌,制作适当的统计图,表示五个安理会常任理事国运动员获得的金牌数占300块金牌的百分比。(4)从你制作的统计表中获得的信息,你估计一下在北京举办的第29届奥运会中国队的表现。 36、已知点C是线段AB上一点,AC<AB,点M、N分别是AB、CB的中点,AC=8,NB=5。求线段MN的长.

七上数学方程计算题四十道,急用 跪求快点,急!
答案:x=66 y=95 (9) 97x+24y=7202 58x-y=2900 答案:x=50 y=98 (10) 42x+85y=6362 63x-y=1638 答案:x=26 y=62 (11) 85x-92y=-2518 27x-y=486 答案:x=18 y=44 (12) 79x+40y=2419 56x-y=1176 答案:x=21 y=19 (13) 80x-87y=2156 22x-y=880 答案:x=4...

初一上学期数学计算题、解方程100道
答案:x=18 y=44 (12) 79x+40y=2419 56x-y=1176 答案:x=21 y=19 (13) 80x-87y=2156 22x-y=880 答案:x=40 y=12 (14) 32x+62y=5134 57x+y=2850 答案:x=50 y=57 (15) 83x-49y=82 59x+y=2183 答案:x=37 y=61 (16) 91x+70y=5845 95x-y=4275 答案:x=45...

七年级上册数学题,附加答案
另外,有一批黑白相间的足球,黑块共12块,均为五边形,白块为六边形。已知黑块总数为12块,求白块数量。设白块数量为X,根据黑白相间分布规律,可列出方程:12 * 5 = X * 3,解此方程可得X的值。某工厂有甲种原料360千克,乙种原料290千克,计划生产A、B两种产品共50件。生产A种产品需用甲种原...

初一数学方程计算题50带答案的
答案:x=87 y=82 2)44x+60y=6340 15x+42y=4122 答案:x=20 y=91 3)11x+74y=3548 71x+45y=4730 答案:x=40 y=42 4)53x+54y=3229 70x+43y=2877 答案:x=11 y=49 5)43x+9y=801 76x+16y=1420 答案:x=9 y=46 6)55x+32y=6161 45x+84y=10707 答案:x=55 y=98 7...

七年级上册数学题,附加答案
a)4000x+3000y<=40000 b)600x+800y<=9200 分别计算得:a)x<=4 b)x>=2】【2】为了庆祝中国足球队首次进入世界杯赛,曙光体育器材厂赠送一批足球给希望中学足球队.若足球队每人领一个则少6个球,每两人领1个则余6个球,问这批足球共有多少个?小明领到足球后十分高兴,就仔细地研究起足球上的...

七年级上册数学一元一次方程计算题
七年级上册数学一元一次方程计算题如下:1、2x+5=17。2、3x-7=20。3、4x-2=18。4、5x+3=23。5、6x-10=32。6、7x+8=50。7、8x-6=30。8、9x-11=44。9、10x+4=74。10、11x-9=66。提高数学成绩的方法有很多,以下是一些建议:一元一次方程的根是满足方程的未知数的值。制定合理的...

初一数学解方程100道及答案及过程
初一数学解方程100道及答案及过程如下:1、2x+8=16,2x=16-8,x=8÷2,x=4 2、x÷5=10,x=5×10,x=50 3、x+7x=8,8x=8,x=8÷8,x=1 4、9x-3x=6,6x=6,x=6÷6,x=1 5、6x-8=4,6x=8+4,x=12÷6,x=2 6、5x+x=9,6x=9,x=9÷6,...

七年级上册数学的,方程,过程及答案。就随便弄100道方程题目,给我就行...
解:按购A,B两种,B,C两种,A,C两种电视机这三种方案分别计算,设购A种电视机x台,则B种电视机y台.(1)①当选购A,B两种电视机时,B种电视机购(50-x)台,可得方程 1500x+2100(50-x)=90000 即5x+7(50-x)=300 2x=50 x=25 50-x=25 ②当选购A,C两种电视机...

七年级上册方程有哪些呢?
七年级上册方程有如下:1. 2(x-2)-3(4x-1)=9(1-x)2. 11x+64-2x=100-9x 3. 15-(8-5x)=7x+(4-3x)4. 3(x-7)-2[9-4(2-x)]=22 5. 3\/2[2\/3(1\/4x-1)-2]-x=2 6. 2(x-2)+2=x+1 7. 0.4(x-0.2)+1.5=0.7x-0.38 8. 30x-10(10-x)=100 9. 4(...

初一数学解方程
初一数学解方程去分母 2分之1(x-1)=2-5分之1(x+2) 两边乘10 5(x-1)=20-2(x+2) 5x-5=20-2x-4 5x+2x=20-4+5 7x=21 x=21\/7 x=3 求50道去分母解方程带答案带过程 1.(2010四川眉山)解方程: 【答案】 解: ………(2分) 解这个整式方程得: ………(4分) 经检验:是原方程的解. ∴...

相似回答