已知数列{an}的前n项和为Sn,且满足an+2SnSn-1=0(n≥2),a1=1\/2(1...
算出其通项为1\/Sn=2n 然后Sn=1\/(2n),an=Sn-S(n-1)=1\/(2n)-1\/(2n-2)所以{An}不是等差数列
若数列{an}的前n项和为sn,且满足an十2snSn一l=0(n≥2),a1=l\/2
回答:证: n≥2时, an+2SnS(n-1)=0 Sn-S(n-1)+2SnS(n-1)=0 S(n-1)-Sn=2SnS(n-1) 等式两边同除以SnS(n-1) 1\/Sn -1\/S(n-1)=2,为定值 1\/S1=1\/a1=1\/½=2 数列{1\/Sn}是以2为首项,2为公差的等差数列。
(本小题满分12分)已知数列{an}的前n项和为Sn,且满足an+2Sn·Sn-1=0...
∴ - =2,又 = =2,∴{ }是以2为首项,公差为2的等差数列.(2)由(1) =2+(n -1)2=2n,∴Sn= 当n≥2时,an=Sn-Sn-1=- n=1时,a1=S1= ,∴an= (3)由(2)知bn=2(1-n)an= ∴b22+b32+…+bn...
已知数列{An}的前n项和为Sn,且满足An+SnSn-1=0(n≧2),a1=1.
解:因为有Sn-S(n-1)=an,所以将an+SnS(n-1)=0变形为: Sn-S(n-1)+SnS(n-1)=0,即1\/Sn-1\/S(n-1)=1 设Tn=1\/Sn,则T=1\/S=1\/a=1,公差D=Tn-T(n-1)=1\/Sn-1\/S(n-1)=1 所以Tn=T+(n-1)D=n n∈N 即Tn=1\/Sn=n 所以Sn=1\/n n∈N an=Sn-S(n...
已知数列{an}的前n项和为Sn,且满足a1=1\/2,an+2SnSn-1=0(n>=2)?
-1\/s(n-1)=2 所以1\/sn是以1\/s1=2为首项 公差为2的等差数列 即 sn=1\/2n an=-1\/n(2n-2)(n≥2) bn=1\/n bn^2=1\/n^2,9,已知数列{an}的前n项和为Sn,且满足a1=1\/2,an+2SnSn-1=0(n>=2)若bn=2(1-n)*an (n大于等于2)求证:b2方+b3方+b4方……+bn方小于1 ...
若数列{an}的前n项和为sn,且满足an+2snsn-1=0(n≥2),a1=...
∴1sn-1sn-1=2(n≥2)∴{1sn}是等差数列,公差d=2.(2)由(1){1sn}是以1s1=1a1=1为首项,以2为公差的等差数列 ∴1sn=1+2(n-1)=2n-1,故sn=12n-1.∴当n≥2时,an=sn-sn-1=12n-1-12n-3=-2(2n-1)(2n-3)当n=1时,a1=1不符合上式 所以an=1,n=1-2(2n-1)...
...a1=1(1)求证:{1sn}成等差数列(2)求数列{an}
1=2(n≥2)∴{1sn}是等差数列,公差d=2.(2)由(1){1sn}是以1s1=1a1=1为首项,以2为公差的等差数列∴1sn=1+2(n?1)=2n?1,故sn=12n?1.∴当n≥2时,an=sn?sn?1=12n?1?12n?3=?2(2n?1)(2n?3)当n=1时,a1=1不符合上式所以an=1,n=1?2(2n?1)(2n?3...
已知数列{an}的前n项和Sn,且满足an+2SnSn-1=0(n2),a1=1\/2。求Tn=s1s...
∴从第二项起,数列{1\/sn}是公差为2的等差数列 ∵a2+2s2s1=0,s1=a1=1\/2 ∴s2-s1+2s2s1=0 解得:s2=1\/4 ∴1\/sn=1\/s2+(n-2)d=1\/(1\/4)+2(n-2)=2n(n≥2)∵1\/s1=1\/a1=1\/(1\/2)=2=2*1,符合上式 ∴1\/sn=2n(n为正整数)∴sn=1\/2n(n为正整数)∴an=sn-s(n...
已知数列{an}的前n项和Sn,且满足an+2SnSn-1=0(n2),a1=1\/2
{1\/Sn}是公差为2的等差数列 2.1\/S1=1\/A1=2 1\/Sn=2n Sn=1\/(2n)An=Sn-S(n-1)=1\/(2n)-1\/(2n-2)=-1\/(2n(n-1))A1=1\/2 3.Bn=2(1-n)An=1\/n (Bn)^2=1\/n^2<1\/(n(n-1))=(n-(n-1))\/(n(n-1))=1\/(n-1)-1\/n (B2)^2+(B3)^2+……+(Bn)^2 =...
已知数列{an}的前n项和为Sn,且满足Sn-2an+n=0(n∈N*)(Ⅰ)求数列{an}...
(Ⅰ)由Sn-2an+n=0 ①得:Sn+1-2an+1+(n+1)=0 ②②-①得,an+1+1=2(an+1).又在Sn-2an+n=0中取n=1得,a1=1,∴{an+1}是以a1+1=2为首项,以2为公比的等比数列.∴an+1=2n,即an=2n?1;(Ⅱ)由(Ⅰ)知,bn=log2(an+1)+1=log2(2n?1+1)+1=n...