不定积分 :∫ ln(1+x^2)dx 求详细过程答案 拜托大神.
∫ 1\/(x²-2x+3)dx =∫ 1\/[(x-1)²+2)dx =(1\/√2)arctan[(x-1)\/√2]+ c 希望可以帮到你,不明白可以追问,如果解决了问题,请点下面的"选为满意回答"按钮。
∫In(1+x²)dx
简单计算一下即可,答案如图所示
求不定积分∫ln(1+x^2)dx 需要过程~
原式=xln(1+x^2)-∫xd[ln(1+x^2)]=xln(1+x^2)-∫2x^2\/(1+x^2)dx =xln(1+x^2)-2∫[1-1\/(1+x^2)dx =xln(1+x^2)-2x+2acrtgx+C
不定积分∫ln(1+x^2)dx 过程
用分部积分法,(uv)'=u'v+uv',设u=ln(1+x^2),v'=1,u'=2x\/(1+x^2),v=x,原式=xln(1+x^2)-2∫x^2dx\/(1+x^2)=xln(1+x^2)-2∫(1+x^2-1)dx(1+x^2)=xln(1+x^2)-2∫dx+2∫dx\/(1+x^2)=xln(1+x^2)-2x+2arctanx+C....
不定积分 xln(1+x^2)dx
∫xln(1+x^2)dx =1\/2∫ln(1+x^2)dx^2 =1\/2∫ln(1+x^2)d(1+x^2)=1\/2(1+x^2)ln(1+x^2)-1\/2∫(1+x^2)dln(1+x^2)=1\/2(1+x^2)ln(1+x^2)-1\/2∫(1+x^2)*1\/(1+x^2)d(1+x^2)=1\/2(1+x^2)ln(1+x^2)-1\/2∫dx^2 =1\/2(1+x^2)ln(1+...
为什么∫ln(1+ x^2) dx= xln(1+ x^2)?
方法如下,请作参考:
求不定积分in(1+x^2)dx
∫ln(1+x^2)dx =xln(1+x^2)-∫xdln(1+x^2)=xln(1+x^2)-∫2x^2\/(1+x^2)dx =xln(1+x^2) + ∫ [ -2 + 2\/(1+x^2) ] dx =xln(1+x^2) -2x + 2arctanx +C
求不定积分∫In(1+x^2)dx
利用分部积分法:∫ ln(1 + x²) dx = x • ln(1 + x²) - ∫ x dln(1 + x²)= xln(1 + x²) - ∫ x • [1\/(1 + x²)] • 2x • dx = xln(1 + x²) - 2∫ x²\/(1 + x²) dx = xl...
求不定积分∫ln(1+x^2)dx,希望可以用图片,打字不好辨认,谢谢
用分部积分法。令u = ln(1+x²), dv = dx, v = x ∫udv = uv - ∫vdu 其余见图。
求不定积分∫xln(1+x^2)dx
令u=x^2,则du=2xdx,∫xln(1+x^2)dx=(1\/2)∫ln(1+u)du,然后用分步积分就行了