1\/2!+2\/3!+3\/4!+...+99\/100!= ?
(n-1)\/n!+n\/(n+1)!通分化简 =1\/(n-1!)-1\/(n+1)!那么写两排计算式,让第一排的第一个加第二排的第二个,以此类推,就能找到规律了,即(n=99)2*和式=1\/2!+[(1\/1!+1\/2!+...+1\/(n-1)!)-(1\/3!+1\/4!+...+1\/(n+1)!)]+n\/(n+1)!=1\/2+[1+1\/2-1\/n!
1+1\/2+1\/3+2\/3+1\/4+2\/4+3\/4+...+1\/100+2\/100+...+99\/100.简算怎么...
将原式中分母相同的数列为一组(一共99组)即原式=1+1\/2+(1\/3+2\/3)+(1\/4+2\/4+3\/4)+...(1\/100+2\/100+...+99\/100)可见分母为n的第n组为1\/n+2\/n+3\/n+...+(n-1)\/n 因为1+2+3+...+(n-1)=n*(n-1)\/2 所以第n组为1\/n+2\/n+3\/n+...+(n-1)\/n=(n-...
1\/2+1\/3+2\/3+1\/4+2\/4+3\/4+...+1\/100+2\/100+99\/100为多少
1\/2+1\/3+2\/3+1\/4+2\/4+3\/4+...+1\/100+2\/100+99\/100 =1\/2+...+(1+99)*99\/2\/100 =1\/2+..+99\/2 =(1+...+99)\/2 =(1+99)*99\/2 =50*99 =4950
1\/2+2\/3+3\/4+4\/5...+99\/100等于几
等于100-(1+1\/2+1\/3+1\/4+...+1\/100),括号里为调和级数,没有求和公式。当n无穷大时近似公式为lnn+C(C=0.57722...)
...3\/4+1\/5+2\/5+3\/5+4\/5+...+1\/100+2\/100+...+99\/100求解答过程,谢谢...
从第2个数开始,数的分子可以看成是a1=1,d=1的等差数列的n项和,也等于(n+1)n\/2 而分母则看成n+1,相比则等于n\/2 1\/2+(1+2)\/3++(1+2+3)\/4+(1+2+3+4)\/5+...+(1+2+3...+99)\/100 =1\/2+2\/2+3\/2+4\/2+...+99\/2 =(1+2+3...+99)\/2 =(99+...
...1\/4+2\/4+3\/4)+...+(1\/100+2\/100...+98\/100+99\/100)
1\/2=1\/2×(2-1)1\/3+2\/3=1\/2×(3-1)1\/4+2\/4+3\/4=1\/2×(4-1)...原式=1\/2×(2-1)+1\/2×(3-1)+1\/2×(4-1)+...+1\/2×(100-1)=1\/2×(1+2+3+...+99)=1\/2×(1+99)×99×1\/2 =1\/4×100×99 =25×99 =2475 ...
请各位帮忙看道题啊 1+1\/2+2\/3+3\/4+4\/5+...+99\/100=?
解 原式=1+(1-1\/2)+(1-1\/3)+……+(1-1\/99)+(1-1\/100)=100-(1\/2+1\/3+1\/4+……+1\/99+1\/100)=100-(∑(1\/i)(i=1,2,…,100)-1)=100-5.187378 =94.812622
用c语言编写程序1-1\\2+2\\3-3\\4...-99\\100
include<stdio.h> void main(){ int i;double sum=1,a=1,b;for(i=1;i<100;i++){ a=(-1)*a;b=a*i\/(i+1);sum=sum+b;} printf("sum=%f\\n",sum);}
...+1\/100)+(-2\/3+2\/4-2\/5+...+2\/100)+...+99\/100快的有奖
...+2\/100)+...+99\/100 =1\/2-(1+2)\/3+(1+2+3)\/4-(1+2+3+4)\/5+(1+2+3+4+……+99)\/100 =0.5-1+1.5-2+2.5-……+49.5 =(0.5-1)+(1.5-2)+(2.5-……+49.5 =-0.5×98÷2+49.5 =-24.5+49.5 =25 ...
求1\/2+(1\/3+2\/3)+(1\/4+2\/3+3\/4)...+(1\/100+2\/100...99\/100)之值。
规律:第n组,分母为n+1,分子依次从1到n 解:考察一般组,第n组:1\/(n+1)+2\/(n+1)+...+n\/(n+1)=(1+2+...+n)\/(n+1)=[n(n+1)\/2]\/(n+1)=n\/2 本题共99组。1\/2+(1\/3+2\/3)+(1\/4+2\/3+3\/4)...+(1\/100+2\/100...99\/100)=1\/2+2\/2+3\/2+...+99...