线性代数矩阵特征值与特征向量

求A的特征值和特征向量

第1个回答  2015-12-05
【知识点】
若矩阵A的特征值为λ1,λ2,...,λn,那么|A|=λ1·λ2·...·λn

【解答】
|A|=1×2×...×n= n!
设A的特征值为λ,对于的特征向量为α。
则 Aα = λα
那么 (A²-A)α = A²α - Aα = λ²α - λα = (λ²-λ)α
所以A²-A的特征值为 λ²-λ,对应的特征向量为α

A²-A的特征值为 0 ,2,6,...,n²-n

【评注】
对于A的多项式,其特征值为对应的特征多项式。
线性代数包括行列式、矩阵、线性方程组、向量空间与线性变换、特征值和特征向量、矩阵的对角化,二次型及应用问题等内容。追问

你这答案和题目对应吗

追答

不好意思,看错了

本回答被提问者和网友采纳
第2个回答  2020-01-07

线性代数:如何求特征值和特征向量?
1、首先我们需要了解特征值和特征向量的定义,如下图;2、齐次性线性方程组和非其齐次线性方程组的区别,如下图;3、特征子空间的定义,如下图;4、特征多项式的定义,如下图;5、特征值的基本性质,如下图;6、齐次线性方程组的特征就是等式右边为0,以消元法简化;7、在初等数学方程组中都是有...

线性代数求特征值和特征向量
1、写出|λΕ-Α|式子的具体形式 ->进行行列式化简,写成因式的形式 ->令式子等于0 ->得到特征值。2、将特征值代入(λΕ-Α)X=0,写出X前面的矩阵。3、对矩阵进行归一性、排他性检验 4、找到“台阶”上的作为受约束向量、剩下的即为自由向量。5、写出该特征值对应的特征向量。求矩阵的全部特...

怎么求矩阵特征值和特征向量?
在线性代数中,特征值和特征向量是矩阵的重要性质。特征值是一个标量,特征向量是与特征值相关联的非零向量。要求一个矩阵的特征值和特征向量,可以按照以下步骤进行:设定一个 n × n 的矩阵 A,其中 n 是矩阵的维度。对于矩阵 A,求解其特征值,可以通过求解特征方程来实现。特征方程的形式是 det(...

什么是特征值和特征向量?
特征值是矩阵的一个重要性质,可以通过求解特征方程来求得。特征方程是由矩阵减去特征值乘以单位矩阵再求行列式得到的方程。1.特征值和特征向量的定义:特征值是矩阵A满足方程Av=λv的数λ,其中v是非零向量,称为对应于特征值λ的特征向量。特征向量表示在矩阵作用下只发生伸缩变化而不改变方向的向量。...

特征值和特征向量有何关系?
特征向量是非零向量,它被矩阵对应的线性变换所拉伸的倍数就是特征值。因此,特征向量和特征值是密切相关的,特征值告诉我们特征向量在矩阵对应线性变换中的行为表现。在矩阵中找到特征向量,必须先知道特征值,并且每个特征值都对应或多个特征向量。因此,特征值和特征向量是线性代数中的基本概念,在很多...

特征值与特征向量之间有什么关系
矩阵有n个线性无关的分别属于特征值1,2,3...的特征向量(1,2,3...中可以有相同的值)。特征值是线性代数中的一个重要概念。在数学、物理学、化学、计算机等领域有着广泛的应用。设 A 是n阶方阵,如果存在数m和非零n维列向量 x,使得 Ax=mx 成立。

矩阵的特征值与特征向量
矩阵的特征值和特征向量是线性代数中的重要概念,它们在许多数学领域都有广泛的应用。特征值是矩阵的一个重要属性,它表示矩阵在特征向量方向上的伸缩能力。特征向量则是指与特征值对应的非零向量,它可以用来描述矩阵对向量进行变换时的行为。矩阵的特征值和特征向量之间的关系可以表示为Ax=λx,其中A是...

在线性代数中,如何快速求解一个矩阵的特征值与特征向量?
对于一个可逆矩阵A,其逆矩阵A^-1可以表示为A^-1=VD^-1,其中V是特征向量组成的矩阵,D是对角线上元素为特征值的对角矩阵。因此,通过求解线性方程组Ax=λx可以得到特征值和对应的特征向量。以上是几种常见的方法来快速求解矩阵的特征值与特征向量。具体选择哪种方法取决于问题的具体情况和要求。

什么是特征值和特征向量?
特征值是线性代数中一个重要的概念,它用来描述矩阵的性质和变换的特点。通俗来说,特征值是一个矩阵在某个方向上的“重要程度”。详细解释:可以将一个矩阵想象成一个变换器,它可以对向量进行变换。而特征值就是这个变换器的“放大倍数”。举个例子,假设有一个矩阵A,它表示一个线性变换。当对一个...

线性代数中的特征值和特征向量有什么联系和区别?
如:λ0)称为A的特征根(或特征值)。n次代数方程在复数域内有且仅有n个根,而在实数域内不一定有根,因此特征根的多少和有无,不仅与A有关,与数域P也有关。若 λ是方阵A的一个特征根,x为对应的特征向量,则λ 的m次方是A的m次方的一个特征根,x仍为对应的特征向量。

相似回答