1/(1*2)+1/(2*3)+1/(3*4)+1/(4*5)+……+1/(99*100)的结果是多少,计算过程怎么算?谢谢。

如题所述

第1个回答  2012-09-22
1/(1×2)+1/(2×3)+1/(3×4)+1/(4×5)+...+1/(99×100)
=1-1/2+1/2-1/3+1/3-1/4+1/4-1/5+...+1/99-1/100
=1-1/100
=99/100

一般的:1/[n(n+1)]=1/n -1/(n+1)
第2个回答  2012-09-22
1-1/2+1/2+1/3+……+1/99-1/100=99/100

计算:1\/(1*2)+1\/(2*3)+1\/(3*4)+1\/(4*5)+……1\/(99*100)=?
裂项相消:原式=1-(1\/2)+(1\/2)-(1\/3)+(1\/3)-(1\/4)+...+(1\/99)-(1\/100)=99\/100

小学奥数题1\/(1*2)+1\/(2*3)+1\/(3*4)+...+1\/(99*100)
1\/(1*2)+1\/(2*3)+1\/(3*4)+1\/(4*5)+1\/(5*6)+……+1\/(98*99)+1\/(99*100)=1-1\/2+1\/2-1\/3+...+1\/99-1\/100 =1-1\/100 =99\/100

用简便方法计算1\/1*2+1\/2*3+```+1\/99*100
过程:1\/1*2+1\/2*3+1\/3*4+...+1\/99*100 =1-1\/2+1\/2-1\/3+1\/3-1\/4+...+1\/99-1\/100 =1-1\/100 =99\/100 这种方法叫做裂项相消法。

分数巧算:1\/1*2 1\/2*3 +1\/3*4 ……+1\/99*100=( )怎么算?
告诉你一公式:1\/[n*(n+1)]=1\/n - 1\/(n+1)1\/1*2+1\/2*3+1\/3*4+...+1\/99*100 =(1-1\/2)+(1\/2-1\/3)+(1\/3-1\/4)+...+(1\/99-1\/100)=1-1\/100 =99\/100

1\/(1×2)+1\/(2×3)+1\/(3×4)+⋯+1\/(99×100)
原式=1-1\/2+1\/2-1\/3+...+1\/99-1\/100 =1-1\/100 =99\/100

...分之一加2乘3分之一加3乘4分之一一直加到99乘100分之一等于多少?
=1-1\/2+1\/2-1\/3+...+1\/99-1\/100 =1-1\/100 =99\/100 1、裂项法,这是分解与组合思想在数列求和中的具体应用。是将数列中的每项(通项)分解,然后重新组合,使之能消去一些项,最终达到求和的目的。 通项分解(裂项)倍数的关系。2、此类变形的特点是将原数列每一项拆为两项之后,其中...

1乘2分之一加2乘3分之一加3乘4分之一一直加到99乘100分之一等于多少
运用裂项公式 分母是两个连续自然数的乘积的时候,有这样的规律。公式算法如下:1\/1*2+1\/2*3+1\/3*4+...+1\/99*100 =1-1\/2+1\/2-1\/3+...+1\/99-1\/100 =1-1\/100 =99\/100

1×1\/2加2×1\/3加3×1\/4加省略号99×1\/100等于多少
99\/100 解题过程如下:1\/1*2+1\/2*3+1\/3*4+...+1\/99*100 =(1-1\/2)+(1\/2-1\/3)+(1\/3-1\/4)+...+(1\/99-1\/100)=1-1\/100 =99\/100

1\/1*2+1\/2*3+1\/3*4+1\/4*5...+1\/99*100怎么用简便方法计算
1\/1*2+1\/2*3+1\/3*4+1\/4*5...+1\/99*100 =1-1\/2+1\/2-1\/3+1\/3-1\/4+...+1\/99-1\/100 =1-1\/100 =99\/100

求1\/1*2+1\/2*3+1\/3*4+.+1\/99*100等于多少?
1\/1*2+1\/2*3+1\/3*4+.+1\/99*100 =(1-1\/2)+(1\/2-1\/3)+...+(1\/99-1\/100)=1-1\/100.中间项消去了 =99\/100

相似回答