利用平方差公式计算: (2+1)(2^2+1)(2^4+1)(2^8+1)+1
=(2^2-1)(2^2+1)(2^4+1)(2^8+1)+1 =(2^4-1)(2^4+1)(2^8+1)+1 =(2^8-1)(2^8+1)+1 =2^16-1+1 =2^16
利用平方差公式计算:(2+1)(2^2+1)(2^4+1)(2^8+1)【要有详细过程】
平方差公式是“(a-b)*(a+b)=a^2-b^2”对吧?但是观察题目里的式子,显然少了(a-b)这一项(因为题目里都是加号的项,却唯独没有减号项),因此,我们便来人为地添上一个减号——分子分母同乘(2-1):原式=(2-1)*[(2+1)*(2^2+1)*(2^4+1)*(2^8+1)+1]\/(2-1)=[(2-1...
利用“平方差公式”计算 (2+1)(2^2+1)(2^4+1)(2^8+1)(2^16+1)(2^32...
=(2^2-1)(2^2+1)(2^4+1)(2^8+1)(2^16+1)(2^32+1)+1 =(2^4-1)(2^4+1)(2^8+1)(2^16+1)(2^32+1)+1 =(2^8-1)(2^8+1)(2^16+1)(2^32+1)+1 =(2^16-1)(2^16+1)(2^32+1)+1 =(2^32-1)(2^32+1)+1 =2^64-1+1 =2^64 一直用平方差公...
(2+10)(2^2+1)(2^4+1)(2^8+1)计算,
若是,解答如下:(2+1)(2^2 +1)(2^4 +1)(2^8 +1)=(2-1)(2+1)(2^2 +1)(2^4 +1)(2^8 +1) (利用平方差公式)=(2^2 -1)(2^2 +1)(2^4 +1)(2^8 +1)=(2^4 -1)(2^4 +1)(2^8 +1)=(2^8 -1)(2^8 +1)=2^16 -1 =65535 (3x-2)²-(...
2+1)(2的平方+1)(2的四次方+1)(2的八次方+1)
用平方差公式 (2+1)(2的平方+1)(2的四次方+1)(2的八次方+1)=(2-1)(2+1)(2^2+1)(2^4+1)(2^8+1)=(2^2-1)(2^2+1)(2^4+1)(2^8+1)=(2^4-1)(2^4+1)(2^8+1)=(2^8-1)(2^8+1)=2^16-1
(2+1)(2^2+1)(2^4+1)(2^8+1)
(2+1)(2^2+1)(2^4+1)(2^8+1)=(2-1)(2+1)(2^2+1)(2^4+1)(2^8+1)=(2²-1)(2^2+1)(2^4+1)(2^8+1)=(2^4-1)(2^4+1)(2^8+1)=(2^8-1)(2^8+1)=2^16-1
(2+1)(2^2+1)(2^4+1)(2^8+1)(2^16+1)+1
(2^4+1)(2^8+1)(2^16+1)+1 =(2^2-1)(2^2+1)(2^4+1)(2^8+1)(2^16+1)+1 =(2^4-1)(2^4+1)(2^8+1)(2^16+1)+1 =(2^8-1)((2^8+1)(2^16+1)+1 =(2^16-1)(2^16+1)+1 =2^32-1+1 =2^32 (连续使用平方差公式)...
数学题:(2+1)(2^2+1)(2^4+1)(2^8+1)(2^16+1)+1=
(2^16+1)+1 =(2-1)(2+1)(2^2+1)(2^4+1)(2^8+1)(2^16+1)+1 =(2^2-1)(2^2+1)(2^4+1)(2^8+1)(2^16+1)+1 =(2^4-1)(2^4+1)(2^8+1)(2^16+1)+1 =(2^8-1)(2^+1)(2^16+1)+1 =(2^16-1)(2^16+1)+1 =2^32-1+1 =2^32 ...
(2+1)(2^2+1)(2^4+1)(2^8+1)的详细解法
分子分母同乘以2²-1,连续使用平方差公式,得:2^16-1
(2+1)(2^2+1)(2^4+1)(2^8+1)-2^16
(2+1)(2^2+1)(2^4+1)(2^8+1)-2^16 =(2-1)(2+1)(2^2+1)(2^4+1)(2^8+1)-2^16 =(2^2-1)(2^2+1)(2^4+1)(2^8+1)-2^16 =(2^4-1)(2^4+1)(2^8+1)-2^16 =(2^8-1)(2^8+1)-2^16 =2^16-1-2^16 =-1 ...