1/2+1/4,加1/5,加1/6+1/7+1/8等于多少?

如题所述

第1个回答  2019-12-04
1/2+1/4+1/5+1/6+1/7+1/8
=(1/2+1/4+1/8)+1/5+1/6+1/7
=(4/8+2/8+1/8)+42/210+35/210+30/210
=7/8+(42+35+30)/210
=7/8+107/210
=735/840+428/840
=1163/840
≈1.38本回答被网友采纳

1\/2+1\/3+1\/4+1\/5+1\/6+1\/7+1\/8=?
1\/2+1\/3+1\/4+1\/5+1\/6+1\/7+1\/8=?=(1\/2+1\/4+1\/8)+(1\/3+1\/6)+(1\/5+1\/7)=7\/8+1\/2+12\/35 =11\/8+12\/35 =1又201\/280

数列计算 1\/2+1\/3+1\/4+1\/5+1\/6+1\/7+1\/8+1\/9=?
当n→∞时 1+1\/2+1\/3+1\/4+ … +1\/n 这个级数是发散的。简单的说,结果为∞ --- 用高中知识也是可以证明的,如下:1\/2≥1\/2 1\/3+1\/4>1\/2 1\/5+1\/6+1\/7+1\/8>1\/2 ……1\/[2^(k-1)+1]+1\/[2^(k-1)+2]+…+1\/2^k>[2^(k-1)](1\/2^k)=1\/2...

1\/2+1\/3+1\/4+1\/5+1\/6+1\/7等于多少
1\/2+1\/3+1\/4+1\/5+1\/6+1\/7 = (1\/2+1\/3+1\/6) + 1\/5 + (1\/4+1\/7)= (3\/6+2\/6+1\/6) + 1\/5 + (7\/28+4\/28)= 1+1\/5+11\/28 = 140\/140 + 28\/140 + 55\/140 = 223\/140

1\/2+1\/3+1\/4+1\/5+1\/6+1\/7+1\/8+1\/9+1\/10+...1\/100这道题怎样简算
他的方法很简单: 1 +1\/2+1\/3 +1\/4 + 1\/5+ 1\/6+1\/7+1\/8 +... 1\/2+1\/2+(1\/4+1\/4)+(1\/8+1\/8+1\/8+1\/8)+... 注意后一个级数每一项对应的分数都小于调和级数中每一项,而且后面级数的括号中的数值和都为1\/2,这样的1\/2有无穷多个,所以后一个级数是趋向无穷大的,...

1\/2+1\/3+1\/4+1\/5+1\/6+1\/7+1\/8+1\/9+1\/10等于多少?
1\/2+1\/3+1\/4+1\/5+1\/6+1\/7+1\/8+1\/9+1\/10 =(1\/2+1\/3+1\/6)+(1\/4+1\/5+1\/10)+1\/7+1\/8+1\/9 =1+11\/20+1\/8+1\/7+1\/9 =1+27\/40+1\/9+1\/7 =1+283\/360+1\/7 =1+2341\/2520 =4861\/2520

1+1\/2+1\/3+1\/4+1\/5+1\/6+...+1\/n极限多少?(过程)
因为1\/3+1\/4>1\/4+1\/4=1\/2 1\/5+1\/6+1\/7+1\/8>1\/8+1\/8+1\/8+1\/8=1\/2 1\/9+1\/10+……+1\/16>1\/16+1\/16+……+1\/16=1\/2 ……所以1+1\/2+1\/3+1\/4+1\/5+1\/6+...+1\/n >1+1\/2+1\/2+1\/2+1\/2+……(无穷多个1\/2相加)所以1+1\/2+1\/2+1\/2+1\/2+…...

1+1\/2+1\/3+1\/4+1\/5+1\/6+1\/7+1\/8+1\/9+1\/10。计算结果。
计算1+1\/2+1\/3+1\/4+1\/5+1\/6+1\/7+1\/8+1\/9+1\/10的过程如下:首先,我们可以通过拆分求和的方法简化计算:= 1 + (1\/2 + 1\/3 + 1\/6) + (1\/4 + 1\/5 + 1\/10) + 1\/7 + 1\/8 + 1\/9 = 1 + 1 + (1\/2 + 1\/3 - 1\/6) + (1\/4 + 1\/5 + 1\/10)= 1 +...

1+1\/2+1\/3+1\/4+1\/5+1\/6+1\/7+1\/8+...1\/n等于多少?
1\/x = ln((x+1)\/x) + 1\/2x^2 - 1\/3x^3 + ...代入x=1,2,...,n,就给出:1\/1 = ln(2) + 1\/2 - 1\/3 + 1\/4 -1\/5 + ...1\/2 = ln(3\/2) + 1\/2*4 - 1\/3*8 + 1\/4*16 - ...1\/n = ln((n+1)\/n) + 1\/2n^2 - 1\/3n^3 + ...相加,就得到...

1\/2+1\/3+1\/4+1\/5+1\/6+1\/7等於多少?
解: 1\/2+1\/3+1\/4+1\/5+1\/6+1\/7 =(1\/2+1\/4+1\/6)+(1\/3+1\/5+1\/7)=(12\/24+6\/24+4\/24)+(35\/105+21\/105+ 15\/105)=(12+6+4)\/24+(35+21+15)\/105 =22\/24+71\/105 =11\/12+71\/105 =1155\/1260+852\/1260 =(1155+852)\/1260 =2007\/1260 ...

1+1\/2+1\/3+1\/4+1\/5+1\/6+1\/7+1\/8+1\/9+1\/10。计算结果。
1+1\/2+1\/3+1\/4+1\/5+1\/6+1\/7+1\/8+1\/9+1\/10 =1+(1\/2+1\/3+1\/6)+(1\/4+1\/5+1\/10)+1\/7+1\/8+1\/9 =1+1+11\/20+1\/8+1\/7+1\/9 =1+1+27\/40+1\/9+1\/7 =1+1+283\/360+1\/7 =1+1+2341\/2520 =1+4861\/2520 ≈2.92896 ...

相似回答