1\/1*2*3+1\/2*3*4+1\/3*4*5...1\/99*100*101
1\/(1×2×3)=【1\/(1×2)-1\/(2×3)】×1\/2; 1\/(2×3×4)=【1\/(2×3)-1\/(3×4)】×1\/2,;……所以原式=【(1\/(1×2)-1\/(2×3)+1\/(2×3)-1\/(3×4)+……+1\/(99×100)-1\/(100×101)】×1\/2=(1\/2-1\/10100)×1\/2=5049\/20200。
(1\/1×2×3)+(1\/2×3×4)+(1\/3×4×5)+...(1\/98×99×100)等于多少啊...
原式=1\/2*[2\/(1*2*3)+2\/(2*3*4)+...+2\/(98*99*100)]=1\/2*[(3-1)\/(1*2*3)+(4-2)\/(2*3*4)+...+(100-98)\/(98*99*100)]=1\/2*[3\/(1*2*3)-1\/(1*2*3)+4\/(2*3*4)-2\/(2*3*4)+...+100\/(98*99*100)-98\/(98*99*100)]=1\/2*[...
1\/1*2+1\/2*3+1\/3*4+1\/4*5...+1\/99*100怎么用简便方法计算
=1-1\/2+1\/2-1\/3+1\/3-1\/4+...+1\/99-1\/100 =1-1\/100 =99\/100
1×1\/2+2×1\/3+3×1\/4+5×1\/4+,加99×1\/100等于多少?
1\/1*2+1\/2*3+1\/3*4+...+1\/99*100 =(1-1\/2)+(1\/2-1\/3)+(1\/3-1\/4)+...+(1\/99-1\/100)=1-1\/100 =99\/100 简便计算是一种特殊的计算,它运用了运算定律与数字的基本性质,从而使计算简便,使一个很复杂的式子变得很容易计算出得数。
如何简便计算:1\/1*2+1\/2*3+1\/3*4+.1\/98*99+1\/99*100
要用软件计算么?另外,可变为:(1\/1+1\/1)+(2\/2+1\/2)+(3\/3+1\/3)+(4\/4+1\/4)+...+(99\/99+1\/99)= 99+(1\/1+1\/2+1\/3+1\/4+...+1\/99)结果是:104.1774
分数巧算:1\/1*2 1\/2*3 +1\/3*4 ……+1\/99*100=( )怎么算?
1+1\/2+1\/3+1\/4+...+1\/100=?告诉你一公式:1\/[n*(n+1)]=1\/n - 1\/(n+1)1\/1*2+1\/2*3+1\/3*4+...+1\/99*100 =(1-1\/2)+(1\/2-1\/3)+(1\/3-1\/4)+...+(1\/99-1\/100)=1-1\/100 =99\/100
1乘2分之一加2乘3分之一加3乘4分之一一直加到99乘100分之一等于多少
运用裂项公式 分母是两个连续自然数的乘积的时候,有这样的规律。公式算法如下:1\/1*2+1\/2*3+1\/3*4+...+1\/99*100 =1-1\/2+1\/2-1\/3+...+1\/99-1\/100 =1-1\/100 =99\/100
1\/1×2+1\/2×3+1\/3×4+...1\/99×100怎么算
1\/1×2+1\/2×3+1\/3×4+...1\/99×100 =(1-1\/2)+(1\/2-1\/3)+(1\/3-1\/4)+...+(1\/99-1\/100)把每一项都拆开来,前后抵消,最后只剩下1-1\/100=99\/100
...1加2乘3乘4分之1加3乘4乘5分之一...加98乘99乘100分之1
1\/(98x99x100)=1\/2(1\/98+1\/100)-1\/99 因此可以得到 1\/(1x2x3)+ 1\/(2x3x4) +1\/(3x4x5) +...+ x1\/(98x99x100)=1\/2x(1+1\/2+...+1\/98+1\/3+1\/4+...+1\/100)-(1\/2+1\/3+..+1\/99)=1\/2x(1\/2+1\/2+...+1\/98+1\/99-1\/99+1\/2+1\/3+1\/4+...+1\/99+...
1×1\/2+2×1\/3+3×1\/4+1直加到99×1\/100怎么计算?
=1-1\/2+1\/2-1\/3+1\/3-1\/4+1\/4-...-1\/99+1\/99-1\/100 =1-1\/100 =99\/100 分数计算方法:分数的乘法法则:分数乘分数,用分子相乘做积的分子,分母相乘做积的分母,能约分的先约分。通分的步骤:1、先求出原来几个分数(式)的分母的最简公分母。2、根据分数(式)的基本性质,把...