1/2+1/6+1/12+1/20+1/30 简便计算~~

如题所述

第1个回答  推荐于2020-12-11
1/2+1/6+1/12+1/20+1/30
=1-1/2+1/2-1/3+1/3-1/4+1/4-1/5+1/5-1/6
=1-1/6
=5/6本回答被提问者采纳
第2个回答  2011-06-02
2=!*2
6=2*3
12=3*4
20=4*5
30=5*6
第3个回答  2011-06-02
1/2 + (1/2-1/3) + (1/3-1/4) + (1/4-1/5) + (1/5-1/6) = 1/2 + 1/2 - 1/6 = 5/6

1\/2+1\/6+1\/12+1\/20+1\/30=简便计算。
1\/2+1\/6+1\/12+1\/20+1\/30简便计算结果为5\/6。解:1\/2+1\/6+1\/12+1\/20+1\/30 =1\/(1x2)+1\/(2x3)+1\/(3x4)+1\/(4x5)+1\/(5x6)=(1-1\/2)+(1\/2-1\/3)+(1\/3-1\/4)+(1\/4-1\/5)+(1\/5-1\/6)=1-1\/2+1\/2-1\/3+1\/3-1\/4+1\/4-1\/5+1\/5-1\/6 =1-1\/6 ...

1\/2+1\/6+1\/12+1\/20+1\/30=简便计算?
1\/2+1\/6+1\/12+1\/20+1\/30 =30\/60+10\/60+5\/60+3\/60+2\/60 =(30+10+5+3+2)\/60 =50\/60 =5\/6

“1\/2+1\/6+1\/12+1\/20+1\/30”怎样用简便方法计算?
简便计算 1\/2+1\/6+1\/12+1\/20+1\/30 =1\/(1x2)+1\/(2x3)+1\/(3x4)+1\/(4x5)+1\/(5x6)=1-1\/2+1\/2-1\/3+1\/3-1\/4+1\/4-1\/5+1\/5-1\/6 =1-1\/6 =5\/6

1\/2+1\/6+1\/12+1\/20+1\/30怎么简便算啊
解:1\/2+1\/6+1\/12+1\/20+1\/30 =1\/(1×2)+1\/(2×3)+1\/(3×4)+1\/(4×5)+1\/(5×6)=1\/1-1\/2+1\/2-1\/3+1\/3-1\/4+1\/4-1\/5+1\/5-1\/6 =1-1\/6 =1\/5

1\/2+1\/6+1\/12+1\/20+1\/30怎样用简便方法计算
根据基本裂项公式:可知:一、定义:裂项法,这是分解与组合思想在数列求和中的具体应用。是将数列中的每项(通项)分解,然后重新组合,使之能消去一些项,最终达到求和的目的。 通项分解(裂项)倍数的关系。二、其他裂项法公式:

...加12分之一加20分之一加30分之一 一步一步算, 简便计算
1\/2+1\/6+1\/12+1\/20+1\/30 =30\/60+10\/60+5\/60+3\/60+2\/60 =50\/60 =5\/6

1\/2+1\/6+1\/12+1\/20+1\/30+...?
1\/2+1\/6+1\/12+1\/20+1\/30+.+1\/9900简便运算过程如 1\/2+1\/6+1\/12+1\/20+1\/30+...+1\/9900 =1\/1*2+1\/2*3+1\/3*4+1\/4*5+1\/5*6+...+1\/99*100 =1-1\/2+1\/2-1\/3+1\/3-1\/4+1\/4-1\/5+1\/5-1\/6+1\/6-...-1\/99+1\/99-1\/100 =1-1\/100 =99\/100 所以1...

1\/2+1\/6+1\/12+1\/20+1\/30+1\/42的简便运算?
解题思路:常规思路,先通分,再求和。通分要找规律,分母方便通分的,放在一起进行计算。显然,1\/2,1\/6,1\/12这三个数分母通分都为12。1\/20,1\/30分母通分为60。所以,简便运算先算前三个数和最后一个数。原=1\/2+1\/6+1\/12+1\/42+1\/20+1\/30 =6\/12+2\/12+1\/12+1\/42+3\/60+2\/60...

1\/2+1\/6+1\/12+1\/20+1\/30+1\/42+1\/56+1\/72+1\/90怎么简便计算?
1\/2+1\/6+1\/12+1\/20+1\/30+1\/42+1\/56+1\/72+1\/90=9\/10 方法:裂项相消法 1\/[n(n+1)]=(1\/n)- [1\/(n+1)]由题意得:1\/6=1\/[2(2+1)]、1\/12=1\/[3(3+1)]、1\/20=1\/[4(4+1)]、1\/30=1\/[5(5+1)]、依次可以表达为1\/[n(n+1)]的形式。所以可得:...

1\/2+1\/6+1\/12+1\/20+1\/30+1\/42的简便运算。
1\/2+1\/6+1\/12+1\/20+1\/30+1\/42 =1\/(1x2)+1\/(2x3)+1\/(3x4)+1\/(4x5)+1\/(5x6)+1\/(6x7)=(1 -1\/2) +(1\/2-1\/3)+...+(1\/6-1\/7)=1 -1\/7 =6\/7 异分母分数相加:1、异分母分数相加,先通分,再按同分母分数相加法去计算,最后要化成最简分数。例1:3\/4+5\/7...

相似回答