求一阶线性微分方程的通解

如题所述

第1个回答  2019-06-27
dy/dx +(2/x)y = sinx/x^2
x^2.dy/dx +2xy = sinx
d/dx ( x^2.y) = sinx
x^2.y = ∫ sinx dx
=-cosx + C
y = (-cosx + C)/x^2追问

第二步到第三步怎么来的

追答

d/dx ( x^2.y)
x^2. dy/dx + y . d/dx(x^2)
=x^2. dy/dx + 2xy

本回答被网友采纳

如何求出一阶线性微分方程的通解?
第一步:求特征根 令ar+br+c=0,解得r1和r2两个值,(这里可以是复数,例如(βi)=-β)。第二部:通解 1、若r1≠r2,则y=C1*e^(r1*x)+C2*e^(r2*x)。2、若r1=r2,则y=(C1+C2x)*e^(r1*x)。3、若r1,2=α±βi,则y=e^(αx)*(C1cosβx+C2sinβx)。分类 一阶线性...

一阶线性微分方程的通解怎么求?
1、对于一阶齐次线性微分方程:其通解形式为:其中C为常数,由函数的初始条件决定。2、对于一阶非齐次线性微分方程:其对应齐次方程:解为:令C=u(x),得:带入原方程得:对u’(x)积分得u(x)并带入得其通解形式为:

一阶线性微分方程的通解是什么?
一阶线性微分方程的通解:y'+p(x)y=g(x)。形如y'+P(x)y=Q(x)的微分方程称为一阶线性微分方程,Q(x)称为自由项。一阶,指的是方程中关于Y的导数是一阶导数。线性,指的是方程简化后的每一项关于y、y'的指数为1。一阶线性微分方程的求解一般采用常数变易法,该方法是由法国著名数学家Lag...

如何求出一阶微分方程通解?
一阶线性微分方程的通解:形如dy\/dx+P(x)y=Q(x)的微分方程称为一阶线性微分方程,其中,P(x),Q(x)均为只含x的函数。步骤:方程两边同乘 e^(∫P(x)dx)。得到: e^(∫P(x)dx)*dy\/dx + e^(∫P(x)dx)*P(x)y = e^(∫P(x)dx)*Q(x)[ y* e^(∫P(x)dx ...

一阶线性微分方程通解公式是什么?
一阶线性微分方程通解公式为y'+P(x)y=Q(x)。一般的一阶线性微分方程可以写成y'+p(x)y=g(x)两边同时乘e^P(P是p的一个原函数)就得到d(ye^P)\/dx=ge^P。所以ye^P=∫ge^Pdx。y=e^(-P)*(GG+C)(GG是ge^P的一个原函数)这里就是代入p=1,g=e^(-x)。一阶线性微分方程通解...

如何求一个一阶微分方程的通解
一阶微分方程的通解为:y=e^(-pdx)[∫q(x)e^(∫pdx)dx+C]一阶微分方程通解的方法:1.积分:首先,我们可以用积分的方法来求解一阶微分方程。积分可以用来求解不同微分方程的通解。例如,一阶线性微分方程可以通过下列方法求解:设y=f(x)是一阶线性微分方程的解,则有:S$frac(dy){dx)+p(x...

一阶线微分方程的通解怎么求?
一阶微分方程有两种形式:y'=p(y\/x)和y'=P(x)y+Q(x)。形如y'+P(x)y=Q(x)的微分方程称为一阶线性微分方程,Q(x)称为自由项。线性指的是方程简化后的每一项关于y、y'的指数为1。一阶线性微分方程的求解一般采用常数变易法,通过常数变易法,可求出一阶线性微分方程的通解。一阶指的...

一阶线性微分方程通解公式
解:∵(x-2)*dy\/dx=y 2*(x-2)³(x-2)dy=[y 2*(x-2)³]dx (x-2)dy-ydx=2*(x-2)³dx [(x-2)dy-ydx]\/(x-2)²=2*(x-2)dx d[y\/(x-2)]=d[(x-2)²]y\/(x-2)=(x-2)² C (C是积分常数)y=(x-2)³ C(x-2)∴...

一阶线性微分方程通解公式是什么?
一阶线性微分方程可以写成y’+p(x)y=g(x)。形如y P(x)y=Q(x)的线性微分方程称之为一阶线性微分方程,Q(x)称为随意项。一阶指的是方程中关于Y的导数是一阶导数。线性,指的是方程简化后的每一项关于y、y’的次数为0或1。其通解形式为 实际上公式:y'+Py=Q之通解为y=[e^(-...

一阶常系数线性微分方程的通解
一阶常系数线性微分方程的通解如下:一阶线性齐次微分方程公式:y'+P(xy)=Q(x)。Q(x)称为自由项。一阶,指的是方程中关于Y的导数是一阶导数。线性,指的是方程简化后的每一项关于y、y'的指数为1。通解求法:一阶线性微分方程的求解一般采用常数变易法,通过常数变易法,可求出一阶线性...

相似回答