1\/2+1\/4+1\/8+1\/16+1\/32+1\/64+1\/128等于?为什么
1\/2+1\/4+1\/8+1\/16+1\/32+1\/64+1\/128=127\/128。原因:每一项后面的分母都是前面的一半,所以可以在原来的式子最后+1\/128,可以发现从后往前算,就是2个1\/128加起来变成1个1\/64,然后2个1\/64加起来变成1个1\/32,依次类推,最后就是2个1\/2加起来变成1。1\/2+1\/4+1\/8+1\/16+1\/32...

1\/2+1\/4+1\/8+1\/16+1\/32+1\/64+1\/128等于?为什么
an = 1\/2 ×[1\/2^(n-1)]an =( 1\/2)^n 1\/128是当n =7时的数 所以,前7项之和为:sn = [ a1(1-q^n) ] ÷ (1 -q)= 1 - (1\/2)^7 = 1- 1\/128 = 127\/ 128 (128分之127)

1\/2+1\/4+1\/8+1\/16+1\/32+1\/64+1\/128等于?为什么
1\/128+1\/128=1\/64 1\/64+1\/64 = 1\/32 。。。1\/2 + 1\/2 = 1 所以 (1\/2+1\/4+1\/8+1\/16+1\/32+1\/64+1\/128) + 1\/128 = 1 (1\/2+1\/4+1\/8+1\/16+1\/32+1\/64+1\/128) =1 -1\/128 = 127 \/128

1\/2+1\/4+1\/8+1\/16+1\/32+1\/64+1\/128=
可以通分,分母最大的是128,那么 1\/2+1\/4+1\/8+1\/16+1\/32+1\/64+1\/128 =64\/128+32\/128+16\/128+8\/128+4\/128+2\/128+1\/128 =(64+32+16+8+4+2+1)\/128同分母的分数相加,分母不变,分子相加 =127\/128

简便计算1\/2+1\/4+1\/8+1\/16+1\/32+1\/64+1\/128
原式=1-1+1\/2+1\/4+1\/8+1\/16+1\/32+1\/64+1\/128 =1-1\/2+1\/4+1\/8+1\/16+1\/32+1\/64+1\/128 =1-1\/4+1\/8+1\/16+1\/32+1\/64+1\/128 。。。=1-1\/128 =127\/128

计算1\/2+1\/4+1\/8+1\/16+1\/32+1\/64+1\/128怎么简便计算
法一:原式+1\/128=1 所以原式=127\/128 法二:等比数列前n项和公式 1\/2+1\/4+1\/8+1\/16+1\/32+1\/64+1\/128 =1\/2+(1\/2)^2+(1\/2)^3+……+(1\/2)^7 =1\/2×[1-(1\/2)^7]\/(1-1\/2)=1-(1\/2)^7 =1-1\/128 =127\/128 ...

1\/2+1\/4+1\/8+1\/16+1\/32+1\/64等于多少?
1\/2+1\/4+1\/8+1\/16+1\/32+1\/64等于63\/64 具体解法如下:1\/2+1\/4+1\/8+1\/16+1\/32+1\/64 =32\/64+16\/64+8\/64+4\/64+2\/64+1\/64 =(32+16+8+4+2+1)\/64 =63\/64

...1\/2+1\/4+1\/8+1\/16+1\/32+1\/64+1\/128+1\/256= …
解:1\/2+1\/4+1\/8=7\/8 1\/2+1\/4+1\/8+1\/16=15\/16 1\/2+1\/4+1\/8+1\/16+1\/32+1\/64+1\/128+1\/256= 255\/256 规律:最后得出的结果分母与最后一个数的分母相同,分子比分母小1。

1\/2+1\/4+1\/8+1\/16+1\/32+1\/64+1\/128···等于几?
答案为1 求解步骤:这个是一个数列收敛问题,由式子形式可看出数列是等比数列,可先求其前n项和 Sn=1-(1\/2)^n 再对前n项和Sn求极限,可得上面式子的和为1

1\/2+1\/4+1\/8+1\/16+1\/32+1\/64+1\/128
原式子加上1\/128。最后再减去1\/128。解得原式子=127\/128

相似回答
大家正在搜