1/2+1/4+1/8+1/16+1/32+1/64+1/128+......+1/1024

如题所述

第1个回答  推荐于2018-05-11
楼主你好~~~很高兴回答你的问题

这道题是有技巧的,不是靠死算的

下面我给你算一下,希望你能学到其中的技巧1/2+1/4+1/8+1/16+1/32+1/64+1/128+......+1/1024
=(1-1/2)+(1/2-1/4)+(1/4-1/8)+......+(1/64-1/128)+......+(1/512-1/1024)
=1-1/2+1/2-1/4+1/4-1/8+......+1/512-1/1024)=1-1/1024
=1023/1024本回答被提问者和网友采纳
第2个回答  2009-10-30
1023/1024
第3个回答  2009-10-30
1/2+1/4+1/8+1/16+1/32+1/64+1/128+......+1/1024
=1-1/2+1/4+1/8+1/16+1/32+1/64+1/128+......+1/1024
=1-1/4+1/8+1/16+1/32+1/64+1/128+......+1/1024
=1-1/8+1/16+1/32+1/64+1/128+......+1/1024
=...
....
=1-1/1024
=1023/1024
第4个回答  2009-10-30
S(n)=1/2(1-1/2^10)/(1-1/2)
=1023/1024
第5个回答  2009-10-30
这是等比数列 q=1/2
1024=(1/2)^10
n=10
s=1/2(1-(1/2)^10)/(1-1/2)=1-(1/2)^10=1023/1024

1\/2+1\/4+1\/8+1\/16+1\/32+1\/64+...+1\/128
1\/2+1\/4+1\/8+1\/16+1\/32+1\/64+1\/128 =(1-1\/2)+(1\/2-1\/4)+(1\/4-1\/8)+(1\/8-1\/16)+(1\/16-1\/32))+(1\/32-1\/64)+(1\/64-1\/128)=1-1\/128 =127\/128

1\/2+1\/4+1\/8+1\/16+1\/32+1\/64+1\/128···等于几?
答案为1 求解步骤:这个是一个数列收敛问题,由式子形式可看出数列是等比数列,可先求其前n项和 Sn=1-(1\/2)^n 再对前n项和Sn求极限,可得上面式子的和为1

1\/2+1\/4+1\/8+1\/16+1\/32+1\/64+1\/128的简便运算
=(1\/2+1\/4+1\/8+1\/16+1\/32+1\/64+1\/64)-1\/128 =1-1\/128=127\/128 每一项后面的分母都是前面的一半,所以可以在原来的式子最后+1\/128,可以发现从后往前算,就是2个1\/128加起来变成1个1\/64,然后2个1\/64加起来变成1个1\/32,依次类推,最后就是2个1\/2加起来变成1。

1\/2+1\/4+1\/8+1\/16+1\/32+1\/64+1\/128
=1\/2+1\/4+1\/8+1\/16+1\/32+1\/64+1\/64-1\/128 =1-1\/128 =127\/128 数学辅导团团员为您解答,有错误请指正,不明白请追问。没问题就采纳吧,真心希望能对你的学习或生活有所帮助!

利用图形揭示的规律计算 1\/2+1\/4+1\/8+1\/6+1\/32+1\/64+1\/128
你的题目应该是1\/2+1\/4+1\/8+1\/16+1\/32+1\/64+1\/128 正确做法应为:1\/2+1\/4+1\/8+1\/16+1\/32+1\/64+1\/128 = 64\/128+32\/128+16\/128+8\/128+4\/128+2\/128+1\/128 =(64+32+16+8+4+2+1)\/128 =127\/128

计算1\/2+1\/4+1\/8+1\/16+1\/32+1\/64+1\/128+1\/256+1\/512+1\/1024 要解题过程...
用裂项法解,1\/2 = 1 - 1\/2, 1\/4 = 1\/2 - 1\/4, 1\/8 = 1\/4 - 1\/8,原式就等于 1 - 1\/2 + 1\/2 - 1\/4 + 1\/4 - 1\/8 ... + 1\/512 - 1\/1024 所以=1 - 1\/1024 = 1023\/1024

计算1\/2+1\/4+1\/8+1\/16+1\/32+1\/64+1\/128怎么简便计算
1\/2+1\/4+1\/8+1\/16+1\/32+1\/64+1\/128 =1\/2+1\/4+1\/8+1\/16+1\/32+1\/64+1\/128+1\/128-1\/128 =1\/2+1\/4+1\/8+1\/16+1\/32+1\/64+1\/64-1\/128 =1\/2+1\/4+1\/8+1\/16+1\/32+1\/32-1\/128 =1\/2+1\/4+1\/8+1\/16+1\/16-1\/128 =1\/2+1\/4+1\/8+1\/8-1\/128 =1...

1\/2+1\/4+1\/8+1\/16+...+1\/1024怎么做?急啊
二分之一:分子比分母少1,加上四分之一是四分之三:分子比分母少1。再加上八分之一是十六分之十五:分子比分母少1。越来越接的1,分子永远比分母少1。分母以两倍的速度递增,分子的累计数也在递增同样的数,永远少1.所以到最后1\/2+1\/4+1\/8+1\/16+...+1\/1024=1023\/1024 ...

1\/2+1\/4+1\/8+1\/16+1\/32+1\/64+1\/128+1\/256+1\/512+1\/1024 求详细过程和...
用裂项法解,1\/2 = 1 - 1\/2, 1\/4 = 1\/2 - 1\/4, 1\/8 = 1\/4 - 1\/8 原式=1\/2+1\/4+1\/8+1\/16+1\/32+1\/64+1\/128+1\/256+1\/512+1\/1024 =1-1\/2+1\/2-1\/4+1\/4-1\/8+……+1\/512+1\/152-1\/1024 =1-1\/4+1\/8+1\/16+1\/32+1\/64+1\/128+1...

1\/2+1\/4+1\/8+1\/16+1\/32+1\/64+1\/128
第一次有4个 所以 S = 4 + 3(n - 1),剪6次的话 S = 4 + 3*5 = 19个 问题二:计算 原来的正方形面积为 1 有剪图形发现该式相加的面积,比原来的正方少最后一小块的面积。所以1\/2+1\/4+1\/8+1\/16+1\/32+1\/64+1\/128 = 1-1\/128 = 127\/128 ...

相似回答