若数列{an}的前n项和为sn,且满足an+2snsn-1=0(n≥2),a1=1(1)求证:{1sn}成等差数列(2)求数列{an}的通项公式.
若数列{an}的前n项和为sn,且满足an+2snsn-1=0(n≥2),a1=1(1)求证:{1...
1=2(n≥2)∴{1sn}是等差数列,公差d=2.(2)由(1){1sn}是以1s1=1a1=1为首项,以2为公差的等差数列∴1sn=1+2(n?1)=2n?1,故sn=12n?1.∴当n≥2时,an=sn?sn?1=12n?1?12n?3=?2(2n?1)(2n?3)当n=1时,a1=1不符合上式所以an=1,n=1?2(2n?1)(2n?3...
已知数列{an}中前n项和为Sn,且满足an+2Sn Sn-1=0(n>2),a1=1\\2 1 求...
其第一项是1\/S1=1\/a1=1\/(1\/2)=2,公差是2. 因而1\/Sn=2+(n-1)*2=2n --->Sn=1\/(2n) --->an=Sn-S(n-1)=(1\/2)[1\/n-1\/(n-1)]=-1\/[2n(n-1)]
已知数列{an}的前n项和为Sn,且满足an+2Sn?Sn-1=0(n≥2),a1=12.(1...
1=2,又1S1=1a1=2,∴{1Sn}是以2为首项,公差为2的等差数列.(2)由(1)1Sn=2+(n-1)2=2n,∴Sn=12n当n≥2时,an=Sn-Sn-1=-12n(n?1)n=1时,a1=S1=12,∴an=12(n=1)?12n(n?1)(n≥2);(3)由(2)知bn=2(1-n)an=1n∴b22+b32+…+bn2=122+132+…+1...
已知数列{an}的前n项和为Sn,且满足an+2SnSn-1=0(n≥2),a1=1\/2(1...
所以{1\/Sn}是等差数列 算出其通项为1\/Sn=2n 然后Sn=1\/(2n),an=Sn-S(n-1)=1\/(2n)-1\/(2n-2)所以{An}不是等差数列
若数列{an}的前n项和为sn,且满足an十2snSn一l=0(n≥2),a1=l\/2
回答:证: n≥2时, an+2SnS(n-1)=0 Sn-S(n-1)+2SnS(n-1)=0 S(n-1)-Sn=2SnS(n-1) 等式两边同除以SnS(n-1) 1\/Sn -1\/S(n-1)=2,为定值 1\/S1=1\/a1=1\/½=2 数列{1\/Sn}是以2为首项,2为公差的等差数列。
已知数列{an}的前n项和为Sn,且满足an+2Sn*Sn-1=0,a1=1\/2。求证:{1\/S...
证明:由an+2Sn*Sn-1=0得到:an=-2Sn*Sn-1,(由a1=1\/2得到an,Sn,Sn-1 不可能为0)将此等式两边去倒数得到:1\/an=(1\/2)*(1\/sn-1\/sn-1)*(1\/an)整理得;1\/sn-1\/sn-1=2 即说明1\/sn是等差数列。
...且an+2Sn·Sn-1=0(n大于等于2),又a1=1\/2,求证{1\/Sn}是等差数列...
已知数列{a‹n›}的前n项和为S‹n›.且a‹n›+2S‹n›S‹n-1›=0(n大于等于2),又a₁=1\/2,求证{1\/S‹n›}是等差数列。证明;∵a‹n›=S‹n›-S‹n-1›,...
已知数列{an}的前n项和为Sn,且满足a1=1\/2,an+2SnSn-1=0(n>=2)?
1.sn-s(n-1)+2SnSn-1=0 1\/sn -1\/s(n-1)=2 所以1\/sn是以1\/s1=2为首项 公差为2的等差数列 即 sn=1\/2n an=-1\/n(2n-2)(n≥2) bn=1\/n bn^2=1\/n^2,9,已知数列{an}的前n项和为Sn,且满足a1=1\/2,an+2SnSn-1=0(n>=2)若bn=2(1-n)*an (n大于等于2)求证...
已知数列{an}的前n项和为Sn,且满足a1=1,an+2SnSn﹣1=0(n≥2)
=0 同时除以SnS(n-1)1\/S(n-1) - 1\/Sn+2=0 1\/Sn - 1\/S(n-1)=2 所以数列{1\/Sn}是等差数列 S1=a1=1\/2 首项为1\/S1=2 公差为2 1\/Sn=2+(n-1)×2 1\/Sn=2n Sn=1\/2n 当n=1,an=1\/2 当n>1时 an=Sn-S(n-1)=1\/2n-1\/(2n-2)=-1\/[2n(n-1)]求采纳 ...
已知数列{An}的前n项和为Sn,且满足An+SnSn-1=0(n≧2),a1=1.
解:因为有Sn-S(n-1)=an,所以将an+SnS(n-1)=0变形为: Sn-S(n-1)+SnS(n-1)=0,即1\/Sn-1\/S(n-1)=1 设Tn=1\/Sn,则T=1\/S=1\/a=1,公差D=Tn-T(n-1)=1\/Sn-1\/S(n-1)=1 所以Tn=T+(n-1)D=n n∈N 即Tn=1\/Sn=n 所以Sn=1\/n n∈N an=Sn-S(n-...