十字相乘法怎么分解因式

3l拒绝粘贴

第1个回答  2009-09-17
十字相乘法概念
十字相乘法能把某些二次三项式分解因式。这种方法的关键是把二次项a分解成两个因数a1,a2的积a1•a2,把常数项c分解成两个因数c1,c2的积c1•c2,并使a1c2+a2c1正好是一次项b,那么可以直接写成结果: ,在运用这种方法分解因式时,要注意观察,尝试,并体会它实质是二项式乘法的逆过程。当首项系数不是1时,往往需要多次试验,务必注意各项系数的符号。

例题
例1 把2x^2-7x+3分解因式.
分析:先分解二次项系数,分别写在十字交叉线的左上角和左下角,再分解常数项,分
别写在十字交叉线的右上角和右下角,然后交叉相乘,求代数和,使其等于一次项系数.
分解二次项系数(只取正因数):
2=1×2=2×1;
分解常数项:
3=1×3=1×3==(-3)×(-1)=(-1)×(-3).
用画十字交叉线方法表示下列四种情况:
1 1

2 3
1×3+2×1
=5
1 3

2 1
1×1+2×3
=7
1 -1

2 -3
1×(-3)+2×(-1)
=-5
1 -3

2 -1
1×(-1)+2×(-3)
=-7
经过观察,第四种情况是正确的,这是因为交叉相乘后,两项代数和恰等于一次项系数-7.
解 2x2-7x+3=(x-3)(2x-1).
一般地,对于二次三项式ax2+bx+c(a≠0),如果二次项系数a可以分解成两个因数之积,即a=a1a2,常数项c可以分解成两个因数之积,即c=c1c2,把a1,a2,c1,c2,排列如下:
a1 c1

a2 c2
a1a2+a2c1
按斜线交叉相乘,再相加,得到a1a2+a2c1,若它正好等于二次三项式ax2+bx+c的一次项系数b,即a1c2+a2c1=b,那么二次三项式就可以分解为两个因式a1x+c1与a2x+c2之积,即
ax2+bx+c=(a1x+c1)(a2x+c2).
像这种借助画十字交叉线分解系数,从而帮助我们把二次三项式分解因式的方法,通常
叫做十字相乘法.
例2 把6x2-7x-5分解因式.
分析:按照例1的方法,分解二次项系数6及常数项-5,把它们分别排列,可有8种不同的排列方法,其中的一种
2 1

3 -5
2×(-5)+3×1=-7
是正确的,因此原多项式可以用十字相乘法分解因式.
解 6x2-7x-5=(2x+1)(3x-5).
指出:通过例1和例2可以看到,运用十字相乘法把一个二次项系数不是1的二次三项式因式分解,往往要经过多次观察,才能确定是否可以用十字相乘法分解因式.
对于二次项系数是1的二次三项式,也可以用十字相乘法分解因式,这时只需考虑如何把常数项分解因数.例如把x2+2x-15分解因式,十字相乘法是
1 -3

1 5
1×5+1×(-3)=2
所以x2+2x-15=(x-3)(x+5).
例3 把5x2+6xy-8y2分解因式.
分析:这个多项式可以看作是关于x的二次三项式,把-8y2看作常数项,在分解二次项及常数项系数时,只需分解5与-8,用十字交叉线分解后,经过观察,选取合适的一组,即
1 2

5 -4
1×(-4)+5×2=6
解 5x2+6xy-8y2=(x+2y)(5x-4y).
指出:原式分解为两个关于x,y的一次式.
例4 把(x-y)(2x-2y-3)-2分解因式.
分析:这个多项式是两个因式之积与另一个因数之差的形式,只有先进行多项式的乘法运算,把变形后的多项式再因式分解.
问:两上乘积的因式是什么特点,用什么方法进行多项式的乘法运算最简便?
答:第二个因式中的前两项如果提出公因式2,就变为2(x-y),它是第一个因式的二倍,然后把(x-y)看作一个整体进行乘法运算,可把原多项式变形为关于(x-y)的二次三项式,就可以用十字相乘法分解因式了.
解 (x-y)(2x-2y-3)-2
=(x-y)[2(x-y)-3]-2
=2(x-y) 2-3(x-y)-2
=[(x-y)-2][2(x-y)+1]
=(x-y-2)(2x-2y+1).
1 -2

2 +1
1×1+2×(-2)=-3
指出:把(x-y)看作一个整体进行因式分解,这又是运用了数学中的“整体”思想方法.

例3:x2+2x-15

分析:常数项(-15)<0,可分解成异号两数的积,可分解为(-1)(15),或(1)(-15)或(3)

(-5)或(-3)(5),其中只有(-3)(5)中-3和5的和为2。

=(x-3)(x+5)

①x^2+(p q)x+pq型的式子的因式分解

这类二次三项式的特点是:二次项的系数是1;常数项是两个数的积;一次项系数是常数项的两个因数的和.因此,可以直接将某些二次项的系数是1的二次三项式因式分解: x^2+(p q)x+pq=(x+p)(x+q)

②kx^2+mx+n型的式子的因式分解

如果能够分解成k=ac,n=bd,且有ad+bc=m 时,那么

kx^2+mx+n=(ax b)(cx d)

a \-----/b ac=k bd=n

c /-----\d ad+bc=m

十字相乘法分解因式是?
十字相乘法分解因式是:十字左边相乘等于二次项,右边相乘等于常数项,交叉相乘再相加等于一次项。其实就是运用乘法公式运算来进行因式分解。十字分解法能用于二次三项式(一元二次式)的分解因式(不一定是在整数范围内)。对于像ax²+bx+c=(a1x+c1)(a2x+c2)这样的整式来说,这个方法的关键是...

十字相乘法分解因式步骤
十字交叉法因式分解:先将二次项系数拆成两个乘积的形式,再将常数项拆成两个乘积的形式,然后交叉乘积后等于一次项系数。1、提取公因式法。2、公式法(平方差公式和完全平方公式)。例如:配方法和十字交叉法等。(x+2y)(2x-11y)=2x2-7xy-22y2。(x-3)(2x+1)=2x2-5x-3。(2y-3)(-11y+...

怎么利用十字相乘法来分解因式?
十字相乘法十字相乘法一般用于二次三项式的因式分解。如x??-5x+6.要求变为(x+a)(x+b)的形式,则可以变为x╳xx+x=-5x.而a,b同号,所以a和b均为负数。(这要进行试商)最后得x-2╳x-3-2x-3x=-5x.所以x??-5x+6=(x-2)(x-3).十字相乘法的算法是...

十字相乘法分解因式
十字相乘法的方法简单点来讲就是:十字左边相乘等于二次项系数,右边相乘等于常数项,交叉相乘再相加等于一次项系数。十字相乘法能把某些二次三项式分解因式。这种方法的关键是把二次项系数a分解成两个因数a1,a2的积a1·a2,把常数项c分解成两个因数c1,c2的积c1·c2,并使a1c2+a2c1正好是一次项b,...

什么是十字相乘法因式分解
十字相乘法是因式分解中十四种方法之一,十字相乘法分解因式的口诀:首尾分解,交叉相乘,求和凑中。十字相乘法(CrossMultiplication)是因式分解中十四种方法之一,主要用于对多项式的因式分解。十字分解法的方法简单来讲就是:十字左边相乘等于二次项系数,右边相乘等于常数项,交叉相乘再相加等于一次项系数,...

如何用十字相乘法分解因式?
十字交叉法因式分解口诀:十字左边相乘等于二次项系数,右边相乘等于常数项,交叉相乘再相加等于一次项系数。其实就是运用乘法公式(x+a)(x+b)=x_+(a+b)x+ab的逆运算来进行因式分解。对于像ax_+bx+c=(a1x+c1)(a2x+c2)这样的整式来说,这个方法的关键是把二次项系数a分解成两个因数a1,a2...

如何用十字相乘法分解因式?
1. 使用十字相乘法分解因式 (1)+2-4x-21:首先将式子进行分组,得到:(1+2) - (4x+21)。接下来,对每个分组应用十字相乘法:第一组:(1+2) = 3 第二组:(4x+21) = 4x+21 所以原始表达式可以分解为:3 - (4x+21)。2. 使用十字相乘法分解因式 (2)+-5xy-6y:首先将式子进行分组,...

如何用“十字相乘法”拆分因式?
十字相乘法是一种用于分解因式的数学方法,适用于系数不为1的二次三项式。通过这种方法,可以将一个二次三项式拆分成两个一次因式的乘积,从而简化解题过程。一、系数不为一的十字相乘法的乘积具体步骤 1、将二次项系数分解质因数。对于二次项2x^2 + 3x + 5,将2分解为2×1。2、将常数项分解质...

十字相乘法解因式分解
十字相乘法的方法简单来讲就是:十字左边相乘等于二次项,右边相乘等于常数项,交叉相乘再相加等于一次项。其实就是运用乘法公式(x+a)(x+b)=x²+(a+b)x+ab的逆运算来进行因式分解。例1 把2x²-7x+3分解因式.分析:先分解二次项系数,分别写在十字交叉线的左上角和左下角,再分解...

十字相乘法 因式分解
分析:2a²–ab-b²可以用十字相乘法进行因式分解 解:x²- 3ax + 2a²–ab -b²=0 x²- 3ax +(2a²–ab - b²)=0 x²- 3ax +(2a+b)(a-b)=0 1 -b 2 ╳ +b [x-(2a+b)][ x-(a-b)]=0 1 -(2a+b)1 ╳...

相似回答
大家正在搜