已知数列{an}的前n项和为Sn,且满足a1=12,an=-2SnSn-1(n≥2).(1)求S1,S2,S3;(2)求数列{an}的

已知数列{an}的前n项和为Sn,且满足a1=12,an=-2SnSn-1(n≥2).(1)求S1,S2,S3;(2)求数列{an}的通项公式;(3)求证:S12+S22+S32+…+Sn2≤12-14n.

无其他回答

设数列{an}的前n项和为Sn,且a1=12,2Sn=SnSn-1+1(n≥2),求:(1)S1,S2...
Sk+1+1,∴(2-kk+1)Sk+1=1,∴Sk+1=k+1k+2=k+1(k+1)+1,即n=k+1时,等式也成立;综合①②知,对任意n∈N*,均有Sn=nn+1.

已知数列{an}的前n项和为Sn,且满足an+2Sn?Sn-1=0(n≥2),a1=12.(1...
1)n=1时,a1=S1=12,∴an=12(n=1)?12n(n?1)(n≥2);(3)由(2)知bn=2(1-n)an=1n∴b22+b32+…+bn2=122+132+…+1n2<11×2+12×3+…+

已知数列{an}的前n项的和为Sn,且满足A1=1\/2,An+2Sn·Sn-1=0(n>=2)?
1\/S1=1\/A1=2 1\/Sn=2n Sn=1\/2n An=Sn-S(n-1)=1\/2n-1\/2(n-1)=-1\/2n(n-1)n>=2时成立,A1=1\/2 3.(Sn)^2=1\/(4n^2),5,已知数列{an}的前n项的和为Sn,且满足A1=1\/2,An+2Sn·Sn-1=0(n>=2)(1)判断(1\/Sn)是否为等差数列?并证明!(2)求Sn和an!(3)求证(S1...

数列{an}的前n项和为Sn,且a1=12,Sn=n2an-n(n-1),n=1,2,…(1)写出Sn与...
n(n?1),即(n2?1)Sn?n2Sn?1=n(n?1),n>2时,Sn=n2n2?1Sn?1+nn+1,由S1=a1=12可得S2=43×12+23=43;S3=98×43+34=94;S4=1615×94+45=165;(2)由(1)可猜想Sn=n2n+1;用数学归纳法证明如下:①当n=1时,S1=a1=12=121+1,猜想成立;②假设n=k猜想成立...

已知数列{an}的前n项和为Sn,且Sn=2an-2(n∈N*).(1)求数列{an}的通项公...
(1)当n=1时,a1=2a1-2,解得a1=2;当n≥2时,an=Sn-Sn-1=2an-2-(2an-1-2)=2an-2an-1,∴an=2an-1,故数列{an}是以a1=2为首项,2为公比的等比数列,故an=2?2n?1=2n.(2)由(1)得,bn=n?2n+log122n=n?2n-n,∴Tn=b1+b2+…+bn=(2+2?22+3?23+…+...

已知数列{an}的前n项和为Sn,且满足a1=1\/2,an+2SnSn-1=0(n>=2)?
1.sn-s(n-1)+2SnSn-1=0 1\/sn -1\/s(n-1)=2 所以1\/sn是以1\/s1=2为首项 公差为2的等差数列 即 sn=1\/2n an=-1\/n(2n-2)(n≥2) bn=1\/n bn^2=1\/n^2,9,已知数列{an}的前n项和为Sn,且满足a1=1\/2,an+2SnSn-1=0(n>=2)若bn=2(1-n)*an (n大于等于2)求证...

已知正项数列{an}的前n项和为Sn,满足a1=1,Sn2-Sn-12=an3(n≥2).(Ⅰ...
S21=a32,可得a2=2,所以a2-a1=1;因此,数列{an}是以1为首项,1为公差的等差数列,其通项公式为an=n.…6分(Ⅱ)数列{tm}中,ak(含ak项)前的所有项之和为(1+2+…+k)+[1+2+…+(k?1)]×2=k(k+1)2+k(k?1)=3k2?k2,当k=36时,其和为3×362?362=1926<2014;当...

已知数列{an}的前n项和为Sn,且满足a1=1\/2,an+2SnSn-1=0(n>=2)
sn-sn-1=an sn-sn-1+2snsn-1=0 两边同除以snsn-1得 (1\/sn)-(1\/sn-1)=2 {1\/sn}是公差为2,首项为2 的等差数列 所以:1\/sn=2n sn=1\/2n 当n=1,a1=1\/2 当n>1时 an=sn-sn-1=1\/2n-1\/(2n-2)=-1\/[2n(n-1)]...

已知数列{an}的前n项和为Sn,且满足Sn=2an-1(n∈N*),数列{bn}满足b1=1...
(1)令n=1,得a1=S1=2a1-1,解得a1=1,当n≥2时,an=Sn-Sn-1=2(an-an-1),整理,得an=2an-1,∴an=2n?1.∵数列{bn}满足b1=1,nbn+1=(n+1)bn,∴bn+1n+1=bnn,∴{bnn}是首项为1的常数列,∴bnn=1,∴bn=n.(2)∵数列{bn}的前n项和为Qn,∴Qn=1+2+...

设数列{an}的前n项和为Sn,已知a1=12且Sn-1Sn-2Sn+1=0. ...
1 6 .当n=3时,S3S2-2S3+1=0,即(a1+a2+a3)(a1+a2)-(a1+a2+a1)+1=0,解得a3= 1 12 .同理a4= 1 20 .(2)由(1)可得S1= 1 2 ,S2= 2 3 ,S3= 3 4 ,S4= 4 5 ,猜想Sn= n n+1 ,n=1,2,3,…下面用数学归纳法证明 ①n=1时,已经成立;②假设n=k时结论成立即Sk= ...

相似回答
大家正在搜