例:计算1/2+(1/3+2/3)+(1/4+2/4+3/4)+...+(1/99+2/99+...+98/99)
解:设a=1/2+(1/3+2/3)+(1/4+2/4+3/4)+...+(1/99+2/99+...+98/99),
则有a=1/2+(2/3+1/3)+(3/4+2/4+1/4)+...+(98/99+97/99+...+1/99)
两式相加,得2a=(1/2+1/2)+(1/3+2/3+2/3+1/3)+(1/4+3/4+2/4+2/4+3/4+1/4)+...+(1/99+98/99+2/99+...+98/99+1/99),
即2a=1+2+3+...+98
再用加法交换率,得2a=98+97+96+...+1
上面两式相加,得4a=(1+98)+(2+97)+...+(98+1)
=99+99+...+99
=99*98=9702
所以a=2425.5
试用上述方法计算:2+12+22+32+42+...+2002+2005
计算1\/2+(1\/3+2\/3)+(1\/4+2\/4+3\/4)+...+(1\/40+2\/40+...+39\/40)
所以 1\/2+(1\/3+2\/3)+(1\/4+2\/4+3\/4)+...+(1\/40+2\/40+...+39\/40)=(2-1)\/2+(3-1)\/2+……+(40-1)\/2 =(1+2+……+39)\/2 =[39*(39+1)\/2]\/2 =390
求1\/2+(1\/3+2\/3)+(1\/4+2\/3+3\/4)...+(1\/100+2\/100...99\/100)之值。
解:考察一般组,第n组:1\/(n+1)+2\/(n+1)+...+n\/(n+1)=(1+2+...+n)\/(n+1)=[n(n+1)\/2]\/(n+1)=n\/2 本题共99组。1\/2+(1\/3+2\/3)+(1\/4+2\/3+3\/4)...+(1\/100+2\/100...99\/100)=1\/2+2\/2+3\/2+...+99\/2 =(1+2+3+...+99)\/2 =4950\/2 =247...
1\/2+(1\/3+2\/3)+(1\/4+2\/4+3\/4)+...+(1\/100+2\/100...+98\/100+99\/100...
=1\/2×(1+2+3+...+99)=1\/2×(1+99)×99×1\/2 =1\/4×100×99 =25×99 =2475
1\/2+1\/3+2\/3+1\/4+2\/4+3\/4+...+1\/100+2\/100+99\/100为多少
=(1+99)*99\/2 =50*99 =4950
1+1\/2+1\/3+2\/3+1\/4+2\/4+3\/4+...+1\/100+2\/100+...+99\/100.简算怎么...
将原式中分母相同的数列为一组(一共99组)即原式=1+1\/2+(1\/3+2\/3)+(1\/4+2\/4+3\/4)+...(1\/100+2\/100+...+99\/100)可见分母为n的第n组为1\/n+2\/n+3\/n+...+(n-1)\/n 因为1+2+3+...+(n-1)=n*(n-1)\/2 所以第n组为1\/n+2\/n+3\/n+...+(n-1)\/n=(n-...
1\/2+(1\/3+2\/3)+(1\/4+2\/4+3\/4)+(1\/5+2\/5+3\/5+4\/5)+...
…+99\/100 =(1\/2)+(1\/3+2\/3)+(1\/4+2\/4+3\/4)+(1\/5+2\/5+3\/5+4\/5)+……+(1\/100+2\/100+……+99\/100)=1\/2+2\/2+3\/2+4\/2+...+99\/2 =[(1+99)*99\/2]\/2 =9900\/4 =2475 同学你好,如果问题已解决,记得右上角采纳哦~~~您的采纳是对我的肯定~谢谢哦 ...
...1\/2+(1\/3+2\/3)+(1\/4+2\/4+3\/4)+···+(1\/10+2\/10+···9\/10)_百 ...
计算每一项:1\/k+2\/k+..+(k-1)\/k=1\/k*[1+2+..+(k-1)]=1\/k*k(k-1)\/2=(k-1)\/2 所以1\/2+(1\/3+2\/3)+(1\/4+2\/4+3\/4)+···+(1\/10+2\/10+···9\/10)=1\/2+2\/2+3\/2+..+9\/2 =1\/2*(1+2+..+9)=1\/2*9*10\/2 =45\/2 (1+1\/2)*(1+1\/...
1+1\/2+1\/3+2\/3+1\/4+2\/4+3\/4+1\/5+2\/5+3\/5+4\/5+...+1\/100+2\/100+...+...
而分母则看成n+1,相比则等于n\/2 1\/2+(1+2)\/3++(1+2+3)\/4+(1+2+3+4)\/5+...+(1+2+3...+99)\/100 =1\/2+2\/2+3\/2+4\/2+...+99\/2 =(1+2+3...+99)\/2 =(99+1)*99\/4=2475 则1+1\/2+1\/3+2\/3+1\/4+2\/4+3\/4+1\/5+2\/5+3\/5+4\/5+...+1...
1\/2+(1\/4+3\/4)+(1\/6+3\/6+5\/6)+...+(1\/98+3\/98+...+97\/98)
分母为2n的话 分子为奇数项1相加到2n-1 即为等差数列求和 通项(2n-1)^2\/2n 即2n-2+1\/2n ,n从1加到49即为原数列和 2(1+2+3..49)-49*2+1\/2(1+1\/2+1\/3...1\/49)第一项用等差数列求和 第三项貌似没有求和公式 但可以用计算机程序算出 ...
1\/2+(1\/3+2\/3)+(1\/4+2\/4+3\/4)+…+(1\/101+2\/101+3\/101+…+100\/101)
1\/2+(1\/3+2\/3)+(1\/4+2\/4+3\/4)+…+(1\/101+…100\/101)=1\/2+(1\/2+1\/2)+(2\/1+2\/1+2\/1)+…+(1\/2+…1\/2)=1\/2+(1\/2)×2+(1\/2)×3+(1\/2)×4+…+(1\/2)×(101-1)=1\/2×(1+2+3+4+5+6+7+8+9+…+100)=1\/2×((1+100)×100÷...