怎么求函数的单调性
1. 把握好函数单调性的定义。证明函数单调性一般(初学最好用定义)用定义(谨防循环论证),如果函数解析式异常复杂或者具有某种特殊形式,可以采用函数单调性定义的等价形式证明。另外还请注意函数单调性的定义是[充要命题]。2. 熟练掌握基本初等函数的单调性及其单调区间。理解并掌握判断复合函数单调性的...
单调性怎么求
单调性求法如下:1、图象观察法 在单调区间上,增函数的图象是上升的,减函数的图象是下降的。因此,在某一区间内,一直上升的函数图象对应的函数在该区间单调递增;一直下降的函数图象对应的函数在该区间单调递减。2、求导法 导数与函数单调性密切相关。它是研究函数的另一种方法,为其开辟了许多新途径...
如何判断函数单调性?
判断函数单调性的方法有以下3种:1.作差法(定义法)根据增函数、减函数的定义,利用作差法证明函数的单调性,其步骤有:取值,作差,变形,判号,定性。其中,变形一步是难点,常用技巧有:整式型---因式分解、配方法,还有六项公式法,分式型---通分合并,化为商式,二次根式型---分子有理化。
函数单调性的求法和步骤 求函数单调性的基本方法
1、导数法:首先对函数进行求导,令导函数等于零,得X值,判断X与导函数的关系,当导函数大于零时是增函数,小于零是减函数。2、定义法:设x1,x2是函数f(x)定义域上任意的两个数,且x1<x2,若f(x1)<f(x2),则此函数为增函数;反知,若f(x1)>f(x2),则此函数为减函数。3、性质...
求函数单调性的一般步骤
一、导数法 步骤1:确定y=f(x)的定义域。步骤2:求导数f'(x),求出f'(x)=0的根。步骤3:函数的无定义点和f'(x)=0的根将f(x)的定义域分成若干区间,分别净侧包讨论若干区间内函数的单调性。骤法4:在区间内,若f'(x)>0,那么函数在这个区间内单调递增,...
证明函数单调性的方法
证明函数单调性的方法如下:1、定义法:利用函数单调性的定义证明。如果对于任意x1<;x2,都有f(x1)<;f(x2),那么函数在该区间上单调递增;反之,如果对于任意x1<;x2,都有f(x1)>;f(x2),那么函数在该区间上单调递减。2、导数法:如果函数在某区间上的导数大于等于0,那么函数在该...
高二数学知识点总结归纳
1.求函数的单调性: 利用导数求函数单调性的基本方法:设函数yf(x)在区间(a,b)内可导,(1)如果恒f(x)0,则函数yf(x)在区间(a,b)上为增函数;(2)如果恒f(x)0,则函数yf(x)在区间(a,b)上为减函数;(3)如果恒f(x)0,则函数yf(x)在区间(a,b)上为常数函数。 利用导数求函数单调性的基本步骤:①...
函数单调性的判断方法
定义法是求具体函数单调性的一个基本方法,具体步骤可以分为5步:1、取值:在所给区间取任意的x1,x2;2、作差:作函数值之差,即f(x1)-f(x2);3、变形:对②中的式子进行变形,常用方法有因式分解、通分、分子分母有理化、配方等方法;4、判号:判断f(x1)-f(x2)的正负;5、作结论:若x1...
怎样判断函数的单调性?
单调性:(1)若导数大于零,则单调递增;若导数小于零,则单调递减;导数等于零为函数驻点,不一定为极值点。需代入驻点左右两边的数值求导数正负判断单调性。(2)若已知函数为递增函数,则导数大于等于零;若已知函数为递减函数,则导数小于等于零。根据微积分基本定理,对于可导的函数,有:如果函数...
求函数单调性的基本方法?
x+1)(x-1)令F’(x)>0,可得到单调递增区间(-∞,-1)∪(1,+∞),同理单调递减区间[-1,1]复合函数还可以用规律法,对于F(g(x)),如果F(x),g(x)都单调递增(减),则复合函数单调递增;否则,单调递减。口诀:同增异减。还可以使用定义法,就是求差值的方法。