过程是什么 请详细一点 在百度上也找到解法了但是看不懂 谢谢
有点看懂了 是不是要把分子变为很有分母的?但是这一步还是看不出来怎么出来的3x^4+2x^2 = 3x^2(x^2+1) +x^2
= 3x^2(x^2+1) -(x^2+1) +1。麻烦再讲一下 谢谢 原谅我脑子不灵光
3x^4+2x^2 = 3x^2(x^2+1) -x^2
= 3x^2(x^2+1) -(x^2+1) +1
(3x^4+2x^2)/(x^2+1) =[3x^2(x^2+1) +(x^2+1) -1]/(x^2+1)
=3x^2 -1 + [1/(x^2+1)]
...∫3x^2dx - ∫dx + ∫1\/(x^2+1)dx 请问这个是怎么变化的?
首先想说:你前面的题目是不是打错了?你那个等号右边的变回去是 ∫[(3x^4+2x^2)\/(x^2+1)]dx 然后:对于∫[(3x^4+2x^2)\/(x^2+1)]dx =∫[(3x^4+3x^2-3x^2+2x^2)\/(x^2+1)]dx =∫[3x^2+(-x^2-1+1)\/(x^2+1)]dx = ∫3x^2dx - ∫dx + ∫1\/(x^2+...
∫((3x^4+2x^2)\/(x^2+1))dx
答:(3x^4+2x^2)\/(x^2+1)=[3(x^2+1)x^2-(x^2+1)+1]\/(x^2+1)=3x^2-1+1\/(x^2+1)∫((3x^4+2x^2)\/(x^2+1))dx =∫(3x^2-1)dx+∫[1\/(x^2+1)]dx =x^3-x+arctanx+C
∫(3x^4+x^2)\/(x^2+1)dx
原式=∫(3x^4+3x^2-2x^2-2+2)\/(x^2+1)dx =∫[3x^2-2+2\/(x^2+1)]dx =x^3-2x+2arctanx+C
求不定积分:(3x^4+2x^3+4x^2+2x+5)\/(x^2+1)
∫(3x^4+2x^3+4x^2+2x+5)\/(x^2+1)dx = ∫[3x^2(x^2+1)+2x(x^2+1)+(x^2+1)+4]\/(x^2+1)dx = ∫[3x^2+2x+1+4\/(x^2+1)]dx =x^3+x^2+x+4arctanx+C ∑小学生数学团▲帮你建模,同你进步;若不明白,可以追问,如有帮助,记得采纳!谢谢 ...
求不定积分:(3x^4+2x^3+4x^2+2x+5)\/(x^2+1)?
= ∫ (3x² + 2x +1) dx + 4∫ dx\/(x² + 1)= x³ + x² + x + 4arctan(x) + C,2,∫(3x^4+2x^3+4x^2+2x+5)\/(x^2+1)dx = ∫[3x^2(x^2+1)+2x(x^2+1)+(x^2+1)+4]\/(x^2+1)dx = ∫[3x^2+2x+1+4\/(x^2+1)]dx =x^3...
求积分 ∫dx\/[x(√3x2-2x-1)]
换元:(1 + x) \/ √(3x^2 - 2x - 1) = t (1)对(1)平方得到:(x^2 + 2x + 1) \/ (3x^2 - 2x - 1) = t^2 => t^2 + 1 = 4 * x^2 \/ (3x^2 - 2x - 1) (2)对(1)两边同时微分并且化简得到:-4x \/ (3x^2 - 2x - 1)^(3\/2) dx =... ...
不定积分 (2x^2+3x^4)\/x^2+1
(2x²+3x⁴)\/(x²+1)dx =∫ (3x²+3x⁴-x²-1+1)\/(x²+1)dx =∫ (3x²+3x⁴)\/(x²+1)dx - ∫ (x²+1)\/(x²+1)dx + ∫ 1\/(x²+1)dx =∫ 3x²dx - ∫ 1 dx + ∫ 1\/(x²...
...∫(2x-1)\/√(1-x^2)dx 2. ∫(sinx)^4\/(cosx)^2dx 3. ∫(secx)^2\/...
第二题:原式=∫{[1-(cosx)^2]^2\/(cosx)^2}dx =∫[1\/(cosx)^2]dx-2∫dx+∫(cosx)^2dx =tanx-2x+(1\/2)∫(1+cos2x)dx =tanx-2x+(1\/2)∫dx+(1\/4)∫cos2xd(2x)=tanx-2x+x\/2+(1\/4)sin2x+C =tanx-3x\/2+(1\/4)sin2x+C 第...
求不定积分,(x^4+3x^3)\/(x^2+2x+2)dx
2016-11-16 ∫(2x+3)\/(x^2+1) dx的不定积分,求过程 5 2016-12-02 求不定积分∫3x^4+3^2+1\/x^2+1dx 8 2015-03-31 求x^11\/(x^8+3x^4+2)的不定积分 43 2014-12-05 求(2x^4+x^3-2x^2-8x-2)\/(2x^3+x^...更多
求不定积分,(x^4+3x^3)\/(x^2+2x+2)
过程如下:∫3x^4+3x^2+1\/x^2+1dx =∫[3(x^4+x^2)+1]\/x^2+1dx =∫3x^2dx+∫dx\/x^2+1 =x^3+arctanx+C。