已知1/x-1/y=1/(x+y),则x^2/y^2+y^2/x^2的值.求详细解答过程

如题所述

第1个回答  2013-03-20
已知1/x-1/y=1/(x+y) 化简y^2-x^2=xy

x^2/y^2+y^2/x^2=[x^4+y^4]/(xy)^2==[x^4+y^4-2x^2y^2+2x^2y^2]/(xy)^2==[y^2-x^2]^2+2x^2y^2/(xy)^2=3
分子-2x^2y^2+2x^2y^2 凑完全平方 利用已知化简
第2个回答  2013-03-20
1/x-1/y=1/(x+y)

(y-x)/xy=1/(x+y)
(y-x)(y+x)=xy
y²-x²=xy
(y²-x²)²=(xy)²
(y^4)-2(xy)²+(x^4)=(xy)²
(x^4)+(y^4)=3(xy)²
((x^4)+(y^4))/((xy)²)=3

x^2/y^2+y^2/x^2=((x^4)+(y^4))/((xy)²)=3本回答被提问者采纳

已知1\/x-1\/y=1\/x+y,则x²\/y²+y²\/x²的值是?
答案为3。详细解题步骤如下 先看已知条件,已知1\/x-1\/y=1\/(x+y),则(x-y)\/xy=1\/(x+y),比例性质,对角相乘,则(x-y)*(x+y)=xy,即x^2-y^2=xy,等式左右分别平方,则,x^4-2x^2*y^2+y^4=x^2*y^2,移项,则x^4+y^4=3x^2*y^2。好了,再看我们要求的x²...

已知1\/x-1\/y=1\/x+y,试求y\/x-x\/y的值
已知1\/x-1\/y=1\/x+y 则1\/(x+y)=(x-y)\/xy x²-y²=xy 两边同除以xy x\/y-y\/x=1 所以y\/x-x\/y=-1 希望能帮到你,祝学习进步O(∩_∩)O

1\/x+1\/y=1\/x+y,则y\/x+x\/y的值为多少?
已知式就是:(x+y)\/xy=1\/(x+y)所以xy=(x+y)^2 x^2+y^2=-xy y\/x+x\/y=(x^2+y^2)\/xy=-1

已知x分之一-y分之一=x+y分之一,试求x分之y-y分之x的值
回答:1\/x-1\/y=1\/(x+y), 两边同乘以x+y, (x+y)\/x-(x+y)\/y=1, 1+y\/x-x\/y-1=1, 整理,y\/x-x\/y=1

化简求值(1\/(x-y)-1\/(x+y))\/(2y\/(x^2-xy+y^2))其中x=2,y=-1_百度...
(1\/(x-y)-1\/(x+y))\/(2y\/(x^2-xy+y^2))=(2y\/(x+y)(x-y))\/(2y\/(x^2-xy+y^2))=(x^2-xy+y^2)\/(x+y)(x-y)=(x+y)(x^2-xy+y^2)\/(x+y)^2(x-y)=(x^3+y^3)\/(x+y)^2(x-y)=[2^3+(-1)^3]\/(2-1)^2(2+1)=7\/3 如果不懂,请追问,祝...

如果(x+y)\/(x-y)=1\/(x-y),求(x^2+y^2)\/xy的值。
解:由题可知x,y都不能等于0,所以x=1,y=-1或者x=-1,y=1,因为x+y=1,两边平方有x^2+y^2+2xy=1,得出x^2+y^2=1 所以x^2+y^2\/xy=-1

已知1\/x-1\/y-1\/(x+y)=0,求(y\/x)^3+(x\/y)^3的值
1\/x-1\/y-1\/(x+y)=0变形:y(x+y)-x(x+y)-xy=0 y²-x²-xy=0 由x≠0,y≠0,两边同除以xy: y\/x-x\/y-1=0 设y\/x=t,则x\/y=1\/t,上式变为 t-1\/t-1=0 即t²-t-1=0 ∴ t=(1±√5)\/2 1) 当t=(1+√5)\/2时 y\/x=(1+√5)\/...

已知1\/x-1\/y=1\/x-y,求y\/x-x\/y的值
请放心使用,有问题的话请追问 满意请及时采纳,谢谢,采纳后你将获得5财富值。你的采纳将是我继续努力帮助他人的最强动力!

已知1\/x+1\/y=1\/x+y 则y\/x+x\/y的值
1\/x+1\/y=1\/(x+y)通分 (x+y)\/xy=1\/(x+y)等式两边同时除以(x+y)1\/xy=1\/(x+y)²xy=(x+y)²xy=x²+y²+2xy x²+y²+xy=0 xy=-(x²+y²)y\/x+x\/y =(x²+y²)\/xy =-xy\/xy =-1 参考资料:http:\/\/zhidao....

已知1\/x+1\/y=-1\/x+y,则y\/x+x\/y=? 怎么做???急!!!
∵1\/x+1\/y=-1\/(x+y) ∴(x+y)\/(xy)=-1\/(x+y) => (x+y)^2=-xy ∴y\/x+x\/y=(x^2+y^2)\/xy=[(x+y)^2-2xy]\/xy=(-xy-2xy)\/xy=-3 (条件:x,y都不为0)

相似回答
大家正在搜