第1个回答 2019-03-09
很高兴为您解答,希望我的回答能对您有帮助,
咱们分情况说
第一种情况,你所说的 1 + 1 如果是单纯的小学算术式,还得分以下几种情况
① 如果两个“1”的单位相同,则结果是2.比如 1米加1米等于2米,一只鸭子加上一只鸭子等于两只鸭子
② 如果两个“1”的单位代表同一个量的不同的单位,1+1不一定等于2.比如1米加上1厘米等于1.01米,还等于101厘米,还等于1010毫米
③ 如果两个“1”的单位代表不同的量,两个“1”不能相加.如在1米的基础上加上1公斤,没有实际意义.
第二种情况,你所说的 1 + 1 如果如果有着代表意义,指的是不是哥德巴赫猜想呀?这个猜想还没有最终证明.
第三种情况:如果是脑筋急转弯呢?答案可就是多了.比如说,要是字谜的话,可以有“王”这个解等等.
第四种情况:如果有其它的意义,那么的话,你说1+1等于几,那么他就等于几.
例如:1+1=0(一次生加上一次死,你什么也没有得到)
1+1=1(一条河流加另一条还是一条河)
1+1=10
(计算机二进制)
1+1=3(一只健康的公牛与另外一头母牛有了一个宝宝)
1+1=4(母牛怀的是双胞胎)
1+1=6(一家三口加上另一家三口是很高兴为您解答,希望我的回答能对您有帮助,
咱们分情况说
第一种情况,你所说的 1 + 1 如果是单纯的小学算术式,还得分以下几种情况
① 如果两个“1”的单位相同,则结果是2.比如 1米加1米等于2米,一只鸭子加上一只鸭子等于两只鸭子
② 如果两个“1”的单位代表同一个量的不同的单位,1+1不一定等于2.比如1米加上1厘米等于1.01米,还等于101厘米,还等于1010毫米
③ 如果两个“1”的单位代表不同的量,两个“1”不能相加.如在1米的基础上加上1公斤,没有实际意义.
第二种情况,你所说的 1 + 1 如果如果有着代表意义,指的是不是哥德巴赫猜想呀?这个猜想还没有最终证明.
第三种情况:如果是脑筋急转弯呢?答案可就是多了.比如说,要是字谜的话,可以有“王”这个解等等.
第四种情况:如果有其它的意义,那么的话,你说1+1等于几,那么他就等于几.
例如:1+1=0(一次生加上一次死,你什么也没有得到)
1+1=1(一条河流加另一条还是一条河)
1+1=10
(计算机二进制)
1+1=3(一只健康的公牛与另外一头母牛有了一个宝宝)
1+1=4(母牛怀的是双胞胎)
1+1=6(一家三口加上另一家三口是6个6个人)
第2个回答 2020-03-05
第一种答案:1+1=0
(你是头脑比较零活的人)
这种人适合做人事工作,他可以用一个人对付另一个人,自己鱼翁得利,比较会整人,仕途会爬的很快,用谁交谁,真正的朋友很少。
第二种答案:1+1=1
(你的学历可能比较高,明知道等于二,但认为不会出现这么简单的问题,脑子比较复杂)
这类人的优点是一般具有管理协调能力,具有凝聚力,能让两个人拧成一股绳,这种人适合做企业的领导者。
第三种答案:1+1=2
(一般幼儿园小朋友会脱口而出)
这类人具有原则性,不管你是什么样的,我都按规律办事,做事严谨,比较适合做学者,科学家,如搞搞"神七"等
第四种答案:1+1=3
(你属于家庭主妇型),
这样的人将来一定会是好丈夫、好妻子型,会生活的人,和这样的人结婚比较幸福。
第五种答案:1+1>2
(你是外向型人,做事有激情)
这样的人能把每个事物的优点发现出来。有头脑。能把有限的力量发挥至无限,可以做政治家、军事家等。
第六种答案:1+1=王
(你属于不无正业型,也可能你是小学在读)
这样的人做科研工作或做技术开发。空间思维能力比较强。
第七种答案:1+1=丰
(你很冷静,看问题有深度)
这种人做发明家比较合适,想象力丰富,而且逻辑思维能力强。
第八种答案:1+1=田
(你很有思想,喜欢换位思考)
这种人空间想象力丰富.做设计师比较合适.
第九种答案:是我同事女儿回答的。
(庵秩撕苣压槔啵?
在小丫头二岁的时候(当时他只认识二十以内的数字)我两只手每只手伸出一个食指。靠在一起问她:“宝宝,一个加上一个等于几个”她大声说:“11”。
(我晕)
数字如此之大,远远超出了我的预料~
复制过来的。。。。
第4个回答 2020-08-28
在数学角度来说,1+1等于2。
在1742年给欧拉的信中数学家哥德巴赫提出了以下猜想:任一大于2的整数都可写成三个质数之和.因现今数学界已经不使用“1也是素数”这个约定,原初猜想的现代陈述为:任一大于5的整数都可写成三个质数之和.欧拉在回信中也提出另一等价版本,即任一大于2的偶数都可写成两个质数之和。今日常见的猜想陈述为欧拉的版本.把命题"任一充分大的偶数都可以表示成为一个素因子个数不超过a个的数与另一个素因子不超过b个的数之和"记作"a+b"。
1966年陈景润证明了"1+2"成立,即"任一充分大的偶数都可以表示成二个素数的和,或是一个素数和一个半素数的和"。
扩展资料
陈景润,1933年5月22日生于福建福州,当代数学家。
1973年他发表了(1+2)的详细证明,被公认为是对哥德巴赫猜想研究的重大贡献。 1981年3月当选为中国科学院学部委员(院士)。曾任国家科委数学学科组成员。1992年任《数学学报》主编